Еще раз важно отметить, что создание современного телескопа, вне зависимости от его диаметра, обеспечивается не только высоким уровнем оптического и механического производства. Не менее важным является оснащение его современными электромеханическими устройствами, светоприемной аппаратурой, аппаратно-программным комплексом системы управления и сбора данных наблюдений. Исключительно важным качеством современной системы управления телескопом являются ее совместимость с современными информационными технологиями. Возможность доступа к процессу получения данных и самим данным наблюдений с удаленного терминала существенно повышают эффективность работы телескопа, делают телескоп открытым для широкого круга научной общественности.
Прорабатываются также возможности создания специализированных систем обнаружения малых тел Солнечной системы космического базирования. Такие системы на порядок сложнее в проектировании, изготовлении и эксплуатации и на несколько порядков дороже, чем наземные системы. Однако очевидные преимущества оптических инструментов за пределами земной атмосферы и важность вопроса обеспечения безопасности жителей Земли делают необходимыми и такие разработки.
6.3. Перспективные проекты
6.3.1. Перспективные наземные оптические средства, разрабатываемые в мире.Наиболее интенсивно работы по проектированию систем обнаружения проводятся в США. Традиционно к решению проблемы поиска предельно слабых объектов с требованием максимального охвата неба существуют два подхода: построение одного большого обзорного телескопа или создание сети меньших телескопов. Первый вариант кажется проще, но стоимость его гораздо выше. Второй вариант обладает важным преимуществом — большей надежностью и достоверностью получаемой информации. Соответственно в рамках подготовки программы массового обнаружения малых тел Солнечной системы с размерами свыше 100 м предлагаются два проекта — LSST(Large Synoptic Survey Telescope, Большой обзорный телескоп) и Pan-STARRS(Panoramic Survey Telescope and Rapid Response System, Панорамный обзорный телескоп и система быстрого отклика).
Для сравнения эффективности различных широкоугольных систем используется такая характеристика, как throughput (англ.), или etendue (франц.) (русское значение «эффективность»):
E = AΩ,
где A = πD 2/4 — площадь эффективной апертуры телескопа с диаметром D (в м 2), Ω = ω 2, а ω — поле зрения в градусах. Информативность E обусловлена тем, что эта величина пропорциональна объему пространства, изучаемого данным телескопом в течение одной экспозиции.
Рассмотрим перспективные проекты LSST и Pan-STARRS.
Проект LSST. Это телескоп с 8,4-м главным зеркалом, трехградусным полем зрения, эффективными апертурой 6,9 м и площадью 38 м 2. Ожидаемая эффективность обзора E составляет около 320 м 2град. 2. Выбор оптической схемы был сделан в пользу трехзеркального телескопа Пола (предложен в 1935 г.), дополненного трехлинзовым корректором (рис. 6.8).
Фокальная поверхность этого телескопа является не совсем плоской, и диаметр линейного изображения будет около 54 см. Такую поверхность может покрыть только мозаика из отдельных ПЗС-матриц, причем мозаика может быть собрана либо в плоскости, и тогда будет наблюдаться слабая расфокусировка от центра к краям, либо на поверхности, близкой к фокальной. Очевидно, что при современных технологических ограничениях количество таких матриц будет свыше 100 (при размере одиночной матрицы 35 × 35 мм количество необходимых матриц будет около 180). Таким образом, при формах одной матрицы 4098 × 4098 пиксел общее количество пикселов будет около 3 миллиардов. Если учесть размеры каждой матрицы в пикселах и информативную единицу с каждого пиксела размером 16 бит, легко оценить объем информации, получаемый после каждой экспозиции. Этот объем превысит один терабайт. Обработать, особенно оперативно, такой объем информации — задача сверхсложная и включает в себя множество технологических проблем, которые нужно разрешить для обеспечения эффективной работы всей системы. Пуск телескопа в строй ожидается в 2015–2016 гг.
Рис. 6.8. Оптическая схема обзорного телескопа LSST (http://www.lsst.org/lsst/science/optical_design)
Рис. 6.9. Телескоп PS1 на Гавайях (http://pan-starrs.ifa.hawaii.edu/public/)
Читать дальше
Конец ознакомительного отрывка
Купить книгу