
Рис. 20. Схемы, иллюстрирующие механику палинтоноса, или баллисты. a - машина подготовлена к стрельбе, вся энергия запасена в связках сухожилий; б - начальная стадия: тяжелые рычаги получают ускорение, отбирая при этом значительную часть энергии сухожилий; в - заключительная стадия: тяжелые рычаги замедляют ход благодаря натяжению тетивы, таким образом их кинетическая энергия передается снаряду; г - летящий снаряд получил энергию, первоначально запасенную в системе.
Математическое описание поведения луков и катапульт оказывается сложным, и, даже записав соответствующие уравнения движения, их нельзя решить аналитически. К счастью, однако, один из моих коллег, д-р А. Претлав, заинтересовавшись этой проблемой, применил для ее решения ЭВМ. К удивлению, оказалось, что процесс передачи энергии теоретически может иметь 100%-ную эффективность. Другими словами, практически вся упругая энергия, запасенная в устройстве, может быть превращена в кинетическую энергию снаряда. Таким образом, теряется (идет на отдачу и на соударения в системе) только малая часть энергии. В этом отношении луки и катапульты обладают преимуществами перед огнестрельным оружием.
Одно следствие из этих фактов, я думаю, хорошо известно большинству стрелков-лучников. Оно состоит в том, что при стрельбе из лука или катапульты ни в коем случае не следует пользоваться несоответствующей стрелой или снарядом. Такая попытка неминуемо закончится не только поломкой лука, но и травмой, так как в этом случае не существует безопасных каналов освобождения запасенной упругой энергии.
Эластичность, резильянс и ухабы на дорогах
Корабль взрезает равнину вод,
А ветер мчит вперед,
Наполнив белые паруса,
Красавицы-мачты гнет.
Алан Канинхэм
Когда Галилей в 1633 г. в Арцетри приступил к изучению проблем упругости, прежде всего он задался вопросами, какие факторы влияют на прочность веревки или бруска при растяжении и зависит ли прочность от длины этой веревки или бруска. Элементарные эксперименты показали, что сила или вес, требуемые для разрыва однородной веревки при ее статическом растяжении, не зависят от длины этой веревки. Такой же результат, казалось бы, подсказывает и здравый смысл, однако и по сей день можно встретить множество людей, глубоко убежденных в том, что длинный кусок веревки "крепче" короткого.
Конечно, дело здесь не в человеческой глупости, а в том, что понимать под словом "крепче". Статическая сила, или натяжение, требуемое для разрыва длинной веревки, будет, конечно, той же, что и для разрыва короткой веревки, но общее удлинение большой веревки перед ее разрывом будет значительнее и, чтобы разорвать ее, потребуется большая энергия, хотя разрушающая сила и прочность материала остаются теми же. Рассуждая немного иначе, можно сказать, что длинная веревка будет смягчать внезапные рывки, упруго растягиваясь под действием нагрузки, так что возникающие при этом перегрузки будут уменьшаться. Другими словами, она действует в значительной степени так же, как подвеска автомобиля.
Таким образом, в тех случаях, когда нагрузка действует рывками, длинная веревка может действительно оказаться "крепче" короткой. Именно поэтому экипажи XVIII в. часто подвешивались к ходовой части на длинных кожаных ремнях, которые лучше коротких могли противостоять толчкам и ударам на рытвинах тогдашних дорог. Припомните к тому же, что якорные цепи и буксирные канаты стараются делать по возможности длиннее, так как они обычно рвутся не от статической нагрузки, а от резких толчков. Тем, кто может ночью или в тумане повстречаться в море с буксируемыми большим сухими доками или буровыми вышками, полезно иметь в виду, что эти сооружения буксируются на стальном тросе длиной почти в милю. Такого рода "морские процессии", занимая огромные участки моря, вселяют ужас в случайных мореплавателей [29] В действительности эластичность якорных цепей и буксирных канатов в значительной мере вызвана их провисанием под действием собственного веса. В этом одна из причин того, почему тяжелые тросы или цепи предпочитают значительно более легким канатам из органических материалов.
.
Способность запасать упругую энергию и при действии нагрузки отклоняться упругим образом без разрушения называется резильянсом и является очень ценным качеством конструкции. Резильянс можно определить как количество упругой энергии, которое можно запасти в конструкции, не причиняя ей повреждений.
Читать дальше
Конец ознакомительного отрывка
Купить книгу