Для таких модных предметов, как физика или астрономия, соответствие между моделью и действительностью столь точно, что некоторые склонны рассматривать Природу как нечто вроде Математика свыше. Однако сколь привлекательной ни казалась бы эта доктрина земным математикам, имеются явления, для которых было бы благоразумным использовать математические аналогии лишь с очень большой осторожностью. "Пути орла на небе, пути змея на скале, пути корабля среди моря и пути мужчины к девице" не предскажешь аналитически. (Кое-кто даже удивляется, каким образом математики все же ухитряются жениться [13] См. на этот счет воспоминания В.М. Тихомирова - V.V.
.) А, построив свой дворец, царь Соломон, вероятно, мог бы добавить, что поведение конструкции под нагрузкой не менее непостижимо, чем пути кораблей и орлов.
В случаях, подобных упомянутым, главную трудность составляет сложность возникающих ситуаций, что не позволяет создать для них полную и простую математическую модель. Обычно имеется несколько возможных путей разрушения конструкций, но ломаются они, естественно, способом, требующим наименьших усилий, и именно об этом способе часто никто не догадывается, не говоря уже о каких-либо расчетах.
Интуитивное понимание возможных слабостей, присущих материалам и конструкциям,- одно из наиболее ценных качеств инженера. Никакие другие интеллектуальные свойства не могут его заменить. Не случайно иногда рушились мосты, сконструированные по лучшим "современным" теориям такими представителями Политехнической школы, как Навье. Но, насколько мне известно, ни с одним из сотен мостов и других сооружений, построенных за свою долгую жизнь Телфордом, не случалось даже сколько-нибудь серьезных неприятностей. Именно поэтому, наверное, в пору расцвета французской теории расчетов конструкций многие мосты и железные дороги на континенте были построены нахрапистыми и малоразговорчивыми английскими и шотландскими инженерами, относившимися к вычислениям без особого уважения.
Коэффициент запаса и коэффициент незнания
Как бы то ни было, но примерно с 1850 г. даже британские и американские инженеры вынуждены были начать рассчитывать на прочность ответственные конструкции, например крупные мосты. Пользуясь разработанными к тому времени методами, они вычисляли наибольшие возможные напряжения в конструкции и следили за тем, чтобы они не превышали некоторой узаконенной официальными нормами прочности материала на разрыв.
Для полной безопасности они делали наибольшее вычисленное действующее напряжение много меньшим - в три-четыре или даже в семь-восемь раз, - чем прочность материала, найденная путем разрушения простых, однородных его образцов, очень аккуратно нагружаемых в лабораторной установке. Эту процедуру они называли введением коэффициента запаса [14] Гигантский коэффициент запаса (18) использовался при проектировании шатунов паровых машин на транспорте вплоть до 1910 г.
. Любая попытка уменьшения веса и стоимости за счет снижения коэффициента запаса грозила обернуться бедой.
Причиной несчастных случаев чаще всего склонны были признавать дефекты материала; возможно, иногда так оно и было. Прочность металлов действительно меняется от образца к образцу, и всегда присутствует некоторый риск, что для изготовления конструкции использован плохой материал. Но прочность железа и стали обычно изменяется лишь в пределах нескольких процентов и чрезвычайно редко возможны колебания в три-четыре раза, не говоря уже о семи или восьми. На практике столь большие расхождения между рассчитанной и действительной прочностью всегда бывают вызваны иными причинами. Действительное напряжение в каком-то не известном заранее месте конструкции может намного превышать вычисленное. Поэтому о коэффициенте запаса иногда говорят как о коэффициенте незнания.
В таких конструкциях, как котлы, балки, корабли, где действуют растягивающие напряжения, в XIX в. материалом обычно служили пуддлинговое железо или мягкая сталь, которые не без оснований имели репутацию "безопасных" материалов. Если в расчет на прочность вносился большой коэффициент незнания, то соответствующие конструкции часто оказывались вполне удовлетворительными, хотя и при этом аварии случались не так уж и редко.
Все более частыми становились катастрофы на море. Требования к повышению скорости и снижению веса судов породили трудности и для адмиралтейства, и для кораблестроителей: у кораблей возникла тенденция разламываться в открытом море надвое, хотя наибольшие расчетные напряжения казались вполне умеренными и безопасными. Так, в 1901 г. внезапно разломился пополам и затонул в Северном море при нормальной погоде совершенно новый эсминец британского военно-морского флота "Кобра", в то время один из самых быстроходных кораблей мира. Погибло 36 человек. Ни последовавшие за этим заседания военного трибунала, ни адмиралтейская комиссия по расследованию не пролили света на технические причины несчастного случая. Поэтому в 1903 г. адмиралтейство выполнило и опубликовало результаты нескольких экспериментов, проведенных в условиях штормовой погоды, с таким же кораблем, эсминцем "Волк". Они показали, что напряжения в корпусе корабля в реальных условиях несколько меньше тех, которые были вычислены при проектировании судна. Но поскольку и те и другие напряжения оказались намного меньше известной прочности стали, из которой был сооружен корабль (значение коэффициента запаса составляло 5-6), эти эксперименты мало что дали.
Читать дальше
Конец ознакомительного отрывка
Купить книгу