Но, увы, хотя это кажется вполне уместным, многого мы сказать не можем. Исследование молекулярных основ радиобиологии только начинается.
Как ни странно, но до сих пор наша наука еще не имеет прямых указаний на то, какие именно молекулярные повреждения наиболее существенны для биологических эффектов. Догадываться можно о многом, но прямых доказательств пока нет. Действительно, если ведущая роль в лучевом поражении принадлежит изменениям наследственного аппарата клеток, а «веществом наследственности» является нуклеиновая кислота, то очевидно, что наиболее важными должны быть нарушения, производимые облучением в молекулах ДНК.
Но хотя роль поражений молекул ДНК кажется довольно очевидной, прямых доказательств почти нет. И это несмотря на то, что нуклеиновая кислота находится под сильным подозрением уже по крайней мере лет двадцать.
До самого недавнего времени все попытки вызвать в молекулах ДНК какие-нибудь изменения с помощью ионизирующих лучей приводили к одному и тому же результату: чтобы вызвать сколько-нибудь установимые изменения, нужны очень высокие дозы радиации — сотни тысяч, миллионы, редко десятки тысяч рентген, то есть во много раз превосходящие «биологические» дозы.
Но живой организм гораздо более чувствительная система, чем любые лабораторные приборы. А методы изучения молекул были недостаточно чувствительны, чтобы обнаружить происходящие в них изменения. В последние годы положение существенно изменилось, и ученые могут определять в молекулах нуклеиновых кислот и нуклеопротеидов (комплексов нуклеиновых кислот с белками) изменения при облучении их дозами порядка тысяч, а иногда даже сотен или десятков рентген. Такие возможности открылись совсем недавно, и, хотя исследования ведутся широким фронтом, точки над «и» еще не поставлены. Но нужно надеяться, что произойдет это довольно скоро.
Я расскажу в качестве примера лишь об одном направлении работ. Выбор мой определяется тем, что наиболее хорошо знакомо, так как большая часть работ, о которых пойдет речь, проведена в нашей лаборатории.
Самое первое, что ученые обнаружили при облучении растворов ДНК, было изменение их вязкости. ДНК представляет собой длинные нитевидные молекулы, и потому растворы ее отличаются очень высокой вязкостью. Чем длиннее нити, тем выше вязкость раствора. После облучения вязкость уменьшается, причем тем больше, чем выше примененная доза. Совершенно ясно, что в основе падения вязкости лежит фрагментация молекул.
Как хорошо, можете подумать вы, фрагментация молекул, фрагментация хромосом… А хромосомы как раз состоят из этих молекул. Все ясно! Подождите радоваться. Все было бы действительно хорошо, если бы дозы, вызывающие первое заметное падение вязкости, были в тысячу или хотя бы в сто раз меньше. А так получается слишком большая неувязка.
Но молекулы ДНК построены довольно своеобразно. Каждая молекула представляет собой двойную нить, закрученную в спираль. Стало быть, чтобы разорвать молекулу, нужно порвать две нити, и падение вязкости связано с двойными разрывами. Возможно, одиночные разрывы возникают при значительно меньших дозах? Может быть… Но как это проверить? Ведь одиночный разрыв никак не сказывается на свойствах молекулы. Вот если бы раскрутить двойные спирали, поместить в раствор отдельные ниточки и померить его вязкость! Тогда все стало бы ясно.
Идея далеко не такая фантастическая, как может показаться на первый взгляд. Если раствор нагреть, молекулы ДНК сами по себе разделяются на отдельные нити. Правда, при остывании они снова соединяются. Однако, если раствор охладить очень быстро, то нити так и остаются разъединенными. Эта методика была использована в радиобиологических опытах московским биофизиком Павлом Иосифовичем Цейтлиным и молодым сотрудником нашей лаборатории Николаем Рябченко.
В этих опытах получалась совершенно иная картина, чем в прежних. Вязкость растворов падала при значительно меньших дозах. Не буду приводить многочисленных цифр, скажу только, что в пересчете на одно клеточное ядро облучение дозой всего в один рентген должно создавать около десяти одиночных разрывов. Здорово? Пока еще нет, потому что два важных вопроса остаются открытыми. Во-первых, опыты ставились на водных растворах ДНК, и что происходит при ее облучении в составе живой клетки — неизвестно. А во-вторых, неясно, какую биологическую роль могут играть одиночные разрывы, если они не сказываются ни на химических, ни на физико-химических свойствах молекул.
Читать дальше