Между прочим, отмечено: навыки решения различных творческих задач применимы и при разрешении многих жизненных проблем. Конечно, жизнь ставит задачи, где ответ либо не единственный (тогда требуется какой-либо критерий оптимальности — для выбора из нескольких почти равноценных ответов), либо возможен при некоторых дополнительных условиях (их придётся домыслить самому).
Задача может быть вообще внутренне противоречива: ответа по сути дела нет, но находить какой-то выход нужно! И мозг ищет оптимальную, с наименьшими потерями, «стратегию выхода из ситуации». Или же решается переформулированная задача: ищется такое — как можно меньшее! — изменение её условий, чтобы доминанта задачи оставалась неизменной, но решение уже существовало.
Есть, вообще-то, ещё один удобный подход для нахождения решения вашей жизненной проблемы: нужно отстраниться от неё, отсечь лишние эмоции, а сделать это можно, сформулировав эту проблему в виде «задачи из учебника». Тогда её можно записать, подобрать подходящий для её анализа мыслительный инструментарий, задать недостающие начальные условия, выдвинуть рабочую гипотезу и т. д. Как видите, методы практически те же, что и выше — т. е. наши принципы, вооружившись которыми, мы совершали прогулки в «пространстве проблем», универсальны.
Бигуди № 47
Может быть, вам неизвестна эта замечательная задача выдающегося математика, академика В.И. Арнольда, ушедшего от нас в 2010-ом году: на книжной полке рядом стоят два тома Пушкина, первый и второй. Страницы каждого тома вместе имеют толщину 2 см, а каждая из обложек имеет толщину 2 мм. Неграмотный червь прогрыз (перпендикулярно страницам) от первой страницы первого тома до последней страницы второго тома. Какой длины путь прогрыз голодный червь? Как утверждает Арнольд, эта задача совершенно недоступна академикам, но с ней неплохо справляются дошкольники. А к какой категории вы отнесете себя? В качестве подсказки: сам Арнольд называет эту задачу топологической. Добавлю ещё интересное и, возможно, полезное для решения примечание Арнольда: «… редакторы (журнала «Успехи физических наук», где эта задача была приведена автором в тексте статьи, чтобы пояснить различие в подходах к делу математиков и физиков) в отличие от дошкольников, на опыте с которыми я основывал свои планы, решить задачу не смогли, поэтому изменили условие, чтобы подогнать его под указанный мной ответ…, так: вместо «от первой страницы первого тома до последней второго» набрали «от последней страницы первого тома до первой страницы второго»». 61
14. Мысленный эксперимент
Я уже говорил: значительная — а порою и решающая — часть научного поиска проходит в форме мысленного эксперимента. Здесь же надо подчеркнуть: такой эксперимент полезен не только в науке. Он и в повседневной жизни позволяет свести неизвестное к известному. И тем самым понять — а то и создать — нечто новое.
По большому счёту любая задача, в которую человек вторгается прежде, чем поставит мысленный эксперимент, — это чёрный ящик. И, казалось бы, если не знаешь устройства, что у него внутри, начни копаться — по информации на выходе сообразишь о содержимом «ларчика». Так думает подавляющее большинство, и действие у них опережает мыслительный эксперимент. Так живут и работают годами многие.
Когда я учился то ли в 7-м, то ли в 8-м классе, на республиканской физической олимпиаде предложили одну из легендарных задач академика Капицы. Была даже такая брошюра: «Задачи академика Капицы. Сотня задач и все без решений». Великий физик ценил не столько конкретные знания, сколько умение проникнуть в суть проблемы, а уже оттуда определять, какие именно законы, таблицы и константы нужны для её решения. Потому и придумал задачи, проверяющие и тренирующие это умение.
Итак, нам предложили представить себе космонавта в свободном пространстве — и с двумя пистолетами в руках. И спросили, в каком случае он улетит дальше: если выстрелит из обоих пистолетов одновременно — или сначала из одного, а затем из другого.
Я горжусь тем, что — единственный из участников олимпиады — в своём решении прежде всего оговорил, что задача не имеет однозначного решения в общем случае. Мысленно представив себе всевозможные картины развития событий, я понял: в зависимости от положения пистолетов возможны бесчисленные варианты движения.
Читать дальше
Конец ознакомительного отрывка
Купить книгу