Бигуди № 43
Когда в Париже появилась знаменитая впоследствии башня инженера Эйфеля, у нее было много противников. Ги де Мопассан был одним из наиболее известных её критиков (среди них были также известный композитор Шарль Гуно, Александр Дюма-сын и многие представители интеллигенции): он считал, что Эйфелева башня — бесполезная и чудовищная конструкция, оскорбляющая вид любимого города. Если во время прогулки взгляд писателя случайно падал на ажурные очертания башни, которую его друзья сравнивали с гигантской фабричной дымовой трубой, настроение его немедленно портилось. Поэтому он всё время искал место, откуда не мог бы видеть это невыносимое сооружение. Где найти такое место в Париже, не слишком удаляясь от красивейшего района Парижа — Марсова поля, где и установлена башня? Задачу знаменитый писатель решил просто — он нашёл, как сам выражался, «… единственное место во всём огромном Париже, откуда её не видно». Там он регулярно обедал. Где же это место? Как называется оно теперь (это уже вопрос на эрудицию)? Не кажется ли Вам, что Мопассан действовал, может быть и неосознанно, но в полном соответствии с «принципом матрёшки»? 57
Понятно, что в условии задачи много различных неизвестных, переменных величин (какие-нибудь X, Y, Z….). Сложность задачи в том и проявляется, что: а) этих неизвестных слишком много; б) непонятно, независимы ли они или как-то связаны между собой; в) что происходит, когда они меняют свои значения; г) в каких пределах они могут меняться.
Вот этот последний пункт имеет особое значение: если нам удаётся узнать, каких предельных значений достигают переменные величины, а затем увидеть, как меняется задача, переформулируется проблема, когда Х становится равен 0 (или когда часть механизма вообще удалена, или когда некий человек не то что опоздает на 5 минут, но не придёт совсем, или ещё что-либо) — тогда мы свели задачу к другой, родственной, но более простой задаче.
Постепенно «включая» переменные величины, возвращая их от экстремумов, мы находим, как они влияют на ход решения полной задачи. И является ли зависимость условия от этих параметров непрерывной, линейной (когда малое изменение параметра способно лишь слабо изменить ответ задачи), или «пороговой» — в этом случае от какого-нибудь незначительного на первый взгляд сдвига резко меняется условие, смысл и ход решения. Например, при X > 0 математическая задача зачастую требует принципиально иного решения, чем при X = 0 (или: добавление ещё одной шестерёнки позволяет получить иное значение скорости, или: появление, даже с запозданием, некоего человека совершенно меняет ситуацию или даже всю жизнь…)
Вот ещё один пример из моей игровой практики в «Что? Где? Когда?». Нам продемонстрировали музыкальные духовые инструменты — валторну и трубу — и прозвучал вопрос: с какой целью валторна «скручена» в несколько раз?
Я к музыке имею весьма отдалённое отношение, но физическое образование у меня хорошее. Как физик, я представляю: издаваемый инструментом звук зависит не от формы, но от длины инструмента. Это — из НЗ, из моего запаса. Но ведь больше ничего мне «принцип проникновения» не подсказывает!
Поскольку надвигается тупик, ищу возможность для мысленного прыжка. Эту возможность подсказывает «принцип сведения» — сведём задачу к другой. Но как? Видоизменив условие. Какой параметр задачи можно изменить? Форму трубы — вряд ли: слишком уж она проста. А вот валторну можно в мысленном эксперименте «раскрутить», развернуть — и получится длинная труба!
Я родом из Средней Азии и часто видел там длинные трубы — карнаи, издающие низкий, гулкий звук [116] Примерно так же выглядят и звучат карпатские трембиты (от латинского tromba — труба). Наверное, как-то похоже выглядели и библейские «иерихонские трубы».
. Ещё из детства помню, как эти карнаи после выступления разбирали на несколько частей и складывали. Ясно — длинные трубы функционально неудобны. Особенно в оркестровой практике. Следовательно, их могли сворачивать для удобства.
Но будет ли такой ответ полон [117] Мы ведь должны использовать и весь доступный набор критериев для проверки правильности ответа.
? Зачем тогда на валторне различные клавиши — регистры? Следовательно, я ещё не рассмотрел полностью «пространство проблемы», не все неизвестные параметры задачи проанализировал. Для чего служат переключатели регистров? Они изменяют тон звучания. Но ведь разный тон имеют трубы разной длины. Значит, в одну свёрнутую плотно — для удобства пользования — валторну «впихнули» сразу несколько труб, разной длины. Регистры — просто удобный механизм переключения тона, т. е. перехода с трубы одной длины к трубе другой длины. Так появляется полный ответ.
Читать дальше
Конец ознакомительного отрывка
Купить книгу