Это классический принцип Хебба, помните? Cells that fire together wire together . Для того чтобы усиление проводимости синапса произошло, нужно, чтобы второй нейрон одновременно и сам был возбужден, и получил нейромедиаторы от первого. Необязательно стимулировать второй нейрон именно с помощью электродов, вставленных в него, – можно добавить в систему третий нейрон. Теперь вы делаете так: на нейрон № 2 приходят одновременно слабенький сигнал от нейрона № 1 и сильный возбуждающий сигнал от нейрона № 3. И – та-дам! – у второго нейрона усиливается связь не только с третьим, но и с первым. Но не с остальными 9998, с которыми он взаимодействует. Что происходило одновременно, про то и запомним, что оно как‐то связано друг с другом. Про все остальное ничего не запомним.
Теперь я еще раз коротко напомню вам, как работает синапс. Электрический импульс приходит на пресинаптическое окончание. Там выделяются нейромедиаторы, например глутамат. Нейромедиаторы плывут через синаптическую щель, достигают второго нейрона и связываются с рецепторами, расположенными на постсинаптической мембране. Если это обыкновенные рецепторы, например AMPA, то они в ответ изменяют свою пространственную структуру, открывают канал, который пронизывает мембрану насквозь, и в клетку начинают заплывать положительно заряженные частицы, например ионы натрия. Если их будет много, то начнется цепная реакция. Подключатся другие каналы, возбуждение начнет распространяться дальше по мембране. Возникнет потенциал действия.
Пока обыкновенные рецепторы стараются, NMDA-рецепторы сидят и ничего не делают. Они не могут. У них каналы закупорены. Серьезно, в каждом канале сидит ион магния и никого не пускает ни туда, ни сюда.
NMDA-рецептор откроет свой канал тогда и только тогда, когда будут соблюдены два условия. Во-первых, на него придет глутамат, выделившийся в синаптическую щель. И во‐вторых, постсинаптическая мембрана уже будет деполяризована. Либо потому, что нейромедиаторы от первого нейрона все поступают и поступают и AMPA-рецепторы успели хорошо поработать. Либо потому, что параллельно что‐то произошло в соседних синапсах и возбуждение распространилось и на интересующий нас синапс тоже. Поодиночке ни одного из этих условий недостаточно. NMDA-рецептор регистрирует строго одновременную активность двух нейронов. И вот если она случилась, тогда да. Тогда он открывает канал, и через канал начинают затекать ионы кальция. И эти ионы кальция запускают в клетке еще кучу всего интересного.
Сразу после того, как NMDA-рецептор запустил в клетку кальций, последний воздействует на две новые для нас протеинкиназы (так, напомню, называются ферменты, которые изменяют активность белков). Одну зовут Ca 2+ /кальмодулин-зависимая протеинкиназа , вторую – протеинкиназа С . Они запускают последовательность событий, приводящую к тому, что в постсинаптическую мембрану встраиваются новые AMPA-рецепторы. Соответственно, она начинает эффективнее улавливать глутамат, приходящий от первого нейрона. Проводимость синапса увеличивается. Ненадолго, максимум на пару часов. На этом может все и закончиться. Число AMPA-рецепторов вернется к прежнему уровню, и мы забудем то, что выучили прямо на лавочке в коридоре перед экзаменом.
Но если в клетку попало много кальция (например, потому что нам попался на экзамене тот самый билет, который мы учили в последний момент, и пришлось еще раз прогнать импульсы по тем же самым синапсам, и так уже усиленным, что позволило им легко задействовать NMDA-рецепторы еще раз), то протеинкиназы еще и усиливают в клетке производство цАМФ. А дальше вы знаете. Дальше все то же самое, что и у аплизии. Накапливается много активной протеинкиназы А, она проникает в ядро, действует там на CREB, запускает считывание генов, синтез белков, рост новых синапсов. Память стала по‐настоящему долговременной, анатомически зашитой в мозге.
Ой, всё. Если вы человек, не отягощенный биологическим образованием, и при этом все это прочитали, то я глубоко вами восхищаюсь. Но мне правда кажется, что это очень-очень важная история, одна из ключевых для понимания того, как вообще работает мозг. У нас есть детектор совпадений. Специальная молекула, задача которой – регистрировать одновременную активность двух нейронов и усиливать связь между ними. То есть наша нервная система конструктивно предрасположена к двум невероятно важным вещам. Во-первых, к тому, чтобы укреплять те нейронные цепочки, которыми мы пользуемся регулярно. Во-вторых, к тому, чтобы регистрировать совпадения. Ассоциировать друг с другом те события, информация о которых поступила в мозг одновременно. Для этого есть совершенно четкий молекулярный механизм. Мы просто так устроены.
Читать дальше
Конец ознакомительного отрывка
Купить книгу