Одновременно с этим Крейг Бейли и его коллега Мэри Чень выяснили с помощью аплизий еще одну важную вещь насчет долговременной памяти [154] Bailey, C. H. & Chen, M. (1988). Long-term memory in Aplysia modulates the total number of varicosities of single identified sensory neurons. PNAS , 85, 2373–2377.
. Они работали с целыми, а не разобранными животными и обучали их либо вообще не реагировать на прикосновение к сифону, либо, наоборот, очень серьезно его бояться. А уже потом, после вручения аплизиям красных дипломов в награду за успешное обучение, накачивали их сенсорные нейроны пероксидазой хрена, заливали эпоксидкой, резали на слои и подсчитывали количество пресинаптических выростов – участков нейрона, содержащих пузырьки с нейромедиаторами и готовых эти нейромедиаторы куда-нибудь выделить.
(“При чем тут хрен?” – спросите вы, если вам не доводилось раньше интересоваться молекулярной биологией. Сам хрен действительно ни при чем, а вот выделенный из него фермент по имени пероксидаза – важный инструмент для биологических исследований. Если просто ввести пероксидазу хрена в нейроны, их становится намного удобнее рассматривать под микроскопом. В современных лабораториях широко применяют молекулярные комплексы из пероксидазы и антител к конкретным белкам, позволяющие их выявлять и подсчитывать.)
Так вот, если вашу аплизию вы вообще ничему не обучали, то в среднем у нее в каждом сенсорном нейроне 1300 пресинаптических выростов. Если она у вас достигла просветления, перестала беспокоиться и втягивать жабры (потому что вы дотрагивались-дотрагивались до ее сифона, и ничего страшного не происходило, и ей надоело тревожиться), то пресинаптических выростов на нейроне будет около 900. Если же, наоборот, вы несколько дней били ее током и внушили ей, что жизнь опасна и тяжела, так что втягивать жабры надо при каждом шорохе, то вы насчитаете у такой аплизии в среднем 2700 пресинаптических выростов на один сенсорный нейрон.
Привет. Это долговременная память. Каждое использование синапса (в том числе и поступление на него дополнительной информации о том, что тут опасно и в другие места тела бьют током) повышает количество сигнальной молекулы цАМФ в сенсорных нейронах. Рано или поздно количество переходит в качество, запускаются молекулярные каскады, клетка инициирует процессы считывания генов, синтеза новых белков и начинает выращивать себе новые пресинаптические окончания, с тем чтобы дальше аплизия могла понадежнее связать сенсорные нейроны с моторными, то есть на много недель запомнить, что надо старательно втягивать жабры в ответ на любое прикосновение.
Все это время я старательно фокусировалась на одном-единственном синапсе, контакте между сенсорным и моторным нейроном, чтобы не пугать вас раньше времени. Но на самом деле, когда мы говорим про аплизию и про те механизмы ее обучения, которые исследовал Кандель, там обычно задействованы не два нейрона, а три.
Сенсорный нейрон воспринимает сигналы от внешнего мира. Моторный нейрон передает их мышце. Третья категория – интернейроны, которые делают все остальное. В случае с рефлексом втягивания жабр у аплизии интернейроны серьезно влияют на то, в какой степени система вообще будет изменяться под влиянием пережитого опыта. Именно интернейроны выделяют серотонин – тот, который в лаборатории просто капают из пипетки. Он служит сигналом о том, что случилось что‐то важное.
На молекулярном уровне происходит вот что [155] Kandel, E. R. et al. (2014). The molecular and systems biology of memory. Cell , 157 (1), 163–186.
, [156] Kandel, E. R. (2000). Nobel Lecture: The molecular biology of memory storage: a dialog between genes and synapses. In: Nobel Lectures, Physiology or Medicine 1996–2000, Editor Hans Jörnvall, World Scientific Publishing Co., Singapore, 2003. https://www.nobelprize.org/uploads/2018/06/kandel-lecture.pdf
: серотонин воспринимается предназначенными для него рецепторами в сенсорном нейроне, и это запускает производство сигнальной молекулы цАМФ; та, в свою очередь, действует на следующего ключевого игрока в этой цепочке – протеинкиназу А . Вообще, протеинкиназы – это большая группа ферментов, которые всегда делают в клетке важные вещи: они умеют навешивать на разные другие белки фосфатную группу (-PO4) и изменять таким образом их активность.
Когда мы говорим о кратковременной памяти, то есть о процессах, которые затрагивают только проводимость отдельно взятого синапса и ненадолго, то протеинкиназа А действует там на ионные каналы, способствует притоку в сенсорный нейрон ионов кальция и усиливает выделение им глутамата – нейромедиатора, передающего сигнал на моторный нейрон.
Читать дальше
Конец ознакомительного отрывка
Купить книгу