Ася Казанцева - Мозг материален

Здесь есть возможность читать онлайн «Ася Казанцева - Мозг материален» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Corpus, Жанр: psy_generic, Биология, Прочая научная литература, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мозг материален: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мозг материален»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Ася Казанцева – известный научный журналист, популяризатор науки, лауреат премии “Просветитель” (2014). Ее третья книга посвящена строению и работе мозга, связям нейробиологии и психологии, “описанию разных экспериментов, старинных и современных, которые в совокупности формируют представление о том, что мозг познаваем”. Автор, как всегда, ссылается на серьезные научные источники и в своем фирменном стиле старается донести до широкого круга читателей главные идеи: мозг – “наш главный рабочий инструмент” – материален, изменчив и неоднороден, “и осознание этих его свойств полезно в повседневной жизни”.

Мозг материален — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мозг материален», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Активно разрабатываются и имплантаты для борьбы со слепотой. Принцип в том, чтобы переводить изображение от видеокамеры, прикрепленной к очкам, или от вживленной прямо в глазное яблоко решетки с фотодиодами в электрические импульсы. Они, в свою очередь, передаются на нейроны сетчатки. Или в латеральное коленчатое тело таламуса (промежуточную станцию обработки зрительной информации). Или прямо в зрительную кору. Сегодня уже есть устройства, одобренные для клинического применения [74] Finn, A. P. et al. (2018). Argus II retinal prosthesis system: a review of patent selection criteria, surgical considerations, and post-operative outcomes. Clinical Ophthalmology , 12, 1089–1097. , и еще больше новых подходов обсуждается, патентуется и испытывается на животных. Но пока что разработчики сталкиваются с гигантским количеством технических проблем [75] Lewis, P. M. et al. (2015). Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Research , 1595, 51–73. . Для сколько-нибудь качественного распознавания образов нужно вживить очень много электродов близко друг к другу. Часть из них будет выходить из строя, нервные клетки будут гибнуть, и, в конце концов, вся эта система от многочасовой работы просто будет сильно нагреваться, что тоже не очень‐то полезно для живой ткани. Поэтому на сегодняшний день человек с таким имплантатом может в лучшем случае определять направление источника света и отмечать крупные движущиеся объекты. Ни об узнавании предметов, ни тем более о чтении речь пока не идет.

Значительно лучше обстоят дела с теми заболеваниями, для лечения которых не нужна ювелирная точность вживления электродов в конкретный нейрон, а достаточно простимулировать какую‐то относительно крупную область мозга. В конце восьмидесятых французские ученые Алим-Луи Бенаби и Пьер Поллак сосредоточились на вживлении электродов для борьбы с болезнью Паркинсона – и достигли в этом таких впечатляющих успехов, что им даже иногда приписывают само изобретение глубокой стимуляции мозга [76] Hariz, M. I. et al. (2010). Deep brain stimulation between 1947 and 1987: the untold story. Journal of Neurosurgery , 29 (2), E1. .

Открытие, как это нередко бывает, отчасти было случайным [77] Benabid, A. L. et al. (1987). Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Proceedings of the Meeting of the American Society for Stereotactic and Functional Neurosurgery, Montreal. . Исходно Бенаби занимался хирургическим лечением болезни Паркинсона. К тому моменту было известно, что удаление вентрального промежуточного ядра таламуса приводит к ослаблению симптомов, в частности к снижению тремора, и эта процедура часто применялась к пациентам, не отвечавшим на лекарственную терапию. Для разрушения участка мозга Бенаби использовал радиочастотную абляцию: в нервную ткань вводят электрод и пропускают через него переменный ток высокой частоты (около 500 кГц). В электрическом поле, окружающем проводник, все заряженные частицы – а их в мозге много! – начинают очень быстро двигаться туда-сюда, соответственно, происходит локальное повышение температуры, приводящее к разрушению выбранного участка. Такой метод менее травматичен для окружающего мозга, чем обычная операция [78] Cosman, E. R. Sr. & Cosman, E. R. Jr. (2009). Radiofrequency Lesions. In: Lozano A. M., Gildenberg P. L., Tasker R. R. (eds.) Textbook of Stereotactic and Functional Neurosurgery . Springer, Berlin, Heidelberg. . Но перед тем как запускать процесс разрушения, важно убедиться, что электрод попал туда, куда нужно. Для этого на него – или на несколько электродов, введенных в приблизительные окрестности искомой точки, – сначала подают ток более низкой частоты (например, 100 Гц) и наблюдают за реакциями и движениями пациента. И выяснилось, что такая стимуляция сама по себе способна ослабить тремор и улучшить координацию движений, например при письме (пациенты во время операции находятся в сознании, применяется только местная анестезия). В таком случае, может быть, и не обязательно ничего разрушать?

Честно говоря, это пробовали проверять и предшественники Бенаби. Когда вы читаете об истории любого открытия, всегда полезно иметь в виду, что все стоят на плечах гигантов, каждая “самая первая” статья об исследовании всегда ссылается на предыдущие попытки [79] Andy, O. J. (1983). Thalamic stimulation for control of movement disorders. Applied Neurophysiology , 46, 107–111. сделать то же самое. Но именно Бенаби удалось подобрать и систематически исследовать такие параметры стимуляции, чтобы эффект от нее был максимальным и сопоставимым по эффективности с разрушением участка мозга. Это дало толчок лавине новых исследований как самого Бенаби, так и его последователей. За прошедшие годы методология заметно изменилась: вместо вентрального промежуточного ядра таламуса теперь стимулируют субталамическое ядро, а вместо переменного тока могут применять и постоянный [80] Okun M. S. et al. (2012). Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomised controlled trial. The Lancet Neurology , 11, 140–149. . Это дополнительно усилило ту магию, которую наблюдал Бенаби: пока стимулятор выключен, человека с болезнью Паркинсона непрерывно бьет крупная дрожь, руки ходят ходуном, выполнять какие-либо действия невозможно. Как только вы включаете стимулятор, человек сразу же возвращает себе контроль над движениями.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мозг материален»

Представляем Вашему вниманию похожие книги на «Мозг материален» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мозг материален»

Обсуждение, отзывы о книге «Мозг материален» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x