Вот у нас есть внешний мир, а в нем звуки – колебания воздуха. Эти колебания передаются на барабанную перепонку, потом на слуховые косточки, а потом в главную часть слухового органа, улитку внутреннего уха. Там есть волосковые клетки – слуховые рецепторы, которые, как следует из названия, обладают волосками, особенными тонкими выростами, способными отклоняться в результате механических воздействий. Это, в свою очередь, приводит к тому, что волосковая клетка открывает мембранные каналы, запускает каскад внутриклеточных изменений и в конце концов выбрасывает во внешнюю среду глутамат – нейромедиатор, который уже воспринимается настоящими нервными клетками.
Существенно здесь то, что эта система конструктивно неспособна кодировать частоту звука непосредственно, по принципу “сколько пришло колебаний, столько и отправим нервных импульсов”. Мы, люди, умеем воспринимать довольно высокочастотные звуки, вплоть до 20 000 Гц. В то же время наши нервные клетки умеют генерировать нервные импульсы не чаще одного раза в миллисекунду, то есть на частоте 1000 Гц, а обычно и того меньше: клеткам нужно время, чтобы открывать-закрывать мембранные каналы, восстанавливать концентрацию ионов по обе стороны мембраны и вообще приходить в себя [69] Подробности о том, как работают нейроны, будут в следующих главах, а еще в “Кратком курсе нейробиологии” в конце книги. Там много красивых длинных слов типа “Na + /K + аденозинтрифосфатаза”, и я не знаю, удобно ли вам вникать в детали прямо сейчас; если вы, скажем, едете в метро, то вряд ли. Для восприятия основного текста это полезно, но совершенно необязательно.
. Поэтому, для того чтобы закодировать частоту звука, в нашей слуховой системе используется просто положение волосковых клеток внутри улитки. Чем ближе они к началу улитки, тем сильнее они возбуждаются в ответ на звуки высокой частоты; чем дальше вглубь, тем сильнее возбуждаются на низкочастотные звуки. В основном это обусловлено механическими свойствами базилярной мембраны, на которой находятся клетки-рецепторы: она узкая и жесткая в начале, широкая и гибкая в конце, и из‐за этого колебания разных частот достигают на ней максимальной амплитуды в разных местах [70] LeMasurier, M. & Gillespie, P. G. (2005). Hair-cell mechanotransduction and cochlear amplification. Neuron , 48 (3), 403–415.
.
Чувствительные окончания слухового нерва подсоединены к улитке по всей ее длине. При этом мозг ожидает, что если он получил самый сильный сигнал от нервного окончания в начале улитки, значит, это у нас звук высокой частоты; а если в конце улитки, то, соответственно, низкой частоты. Это удобное свойство (оно называется “тонотопическая организация”) позволяет подключиться к этим чувствительным окончаниям слухового нерва непосредственно – в том случае, если волосковые клетки у человека погибли.
Кохлеарный имплантат состоит из двух частей: съемной внешней и вживленной внутренней. Они удерживаются вместе с помощью магнита. Внешняя часть содержит микрофон, преобразователь звука и радиопередатчик. Внутренняя часть завершает процесс обработки сигнала, сортирует его по частотам и отправляет импульсы на стимулирующие электроды (в современных устройствах их от 16 до 22). Все электроды закреплены в гибком силиконовом стержне, введенном внутрь улитки. Высокие частоты передаются туда, где мозг ожидает обнаружить высокие частоты. Низкие – туда, где низкие.
Конечно, этот прибор не позволяет воссоздать все богатство звуковой гаммы. Носители кохлеарных имплантатов способны распознавать мелодии заметно хуже, чем обычные люди, и часто полностью перестают слушать музыку, так как она больше не приносит им эстетического наслаждения [71] McDermott, H. J. (2004). Music perception with cochlear implants: a review. Trends in amplification , 8 (2), 49–82.
. Но принципиально, что кохлеарного имплантата достаточно для восприятия человеческой речи. Даже если ребенок был глухим от рождения, с имплантатом он способен научиться понимать собеседников и говорить самостоятельно. Исследователи не дают конкретных рекомендаций насчет оптимального возраста для вживления электродов, подчеркивая большие индивидуальные различия между испытуемыми [72] Peterson, N. R. et al. (2010). Cochlear implants and spoken language processing abilities: review and assessment of the literature. Restorative Neurology and Neuroscience , 28 (2), 237–250.
, [73] Svirsky, M. A. et al. (2000). Language development in profoundly deaf children with cochlear implants. Psychological Science , 11 (2), 153–158.
, но в целом работает принцип “лучше не затягивать”: тому, кто обрел слух в два года, будет проще научиться говорить, чем тому, кто получил его в четыре; им обоим будет намного проще, чем ребенку, прооперированному в восемь лет, но даже он будет обладать серьезными преимуществами по сравнению с тем человеком, чью операцию отложили до двенадцати.
Читать дальше
Конец ознакомительного отрывка
Купить книгу