В. Л. Марищук и В. И. Евдокимов приводят в своей книге ряд стрессоров, которые используются в спортивной и военной психологии для проверки стрессоустойчивости человека @@@@@3#####:
+соревновательная обстановка выполнения заданий и создание повышенной мотивации к победе;
+неожиданные сильные воздействия (громкие звуки, световые вспышки, холодные прикосновения, электрокожные раздражения);
+показ психотравмирующих картинок или кадров из фильмов;
+выполнение действий, оказывающих реальное стрессогенное воздействие (прыжки с парашютом, «обкатка танками», «окуривание» газами в противогазах, обстрел из закрепленного на станке пулемета); +установка на неотвратимость болевого воздействия (наказание электрическим током в случае ошибки при выполнении теста) и т. д. @@@@@2#####.
Понятно, что далеко не все из предложенных этими авторами методов можно применять в повседневной практике психолога для оценки стрессоустойчивости. Из приемлемых методов можно отметить специальное создание трудностей в выполнении мотивированной деятельности в виде дефицита времени или координационной сложности, а также эмоциогенное инструктирование при высокой личной значимости выполняемых контрольных действий.
Последний метод ранее уже применялся автором данного пособия для оценки стрессоустойчивости студентов. Испытуемые дважды проходили испытание на тремометре.
В первый раз студенты должны были просто выполнить предложенное задание (провести щуп тремометра через «дорожку», не касаясь краев отверстий), не получая информации о результатах теста.
Второй раз студенты получали соответствующую инструкцию: «Вы плохо выполнили первое задание, хуже остальных студентов в группе. Постарайтесь теперь максимально сосредоточиться и значительно улучшить свой результат». Во время второго опыта при каждой ошибке звучал резкий звуковой сигнал и мигала контрольная лампа, что создавало дополнительную эмоциональную нагрузку. Подобный эксперимент позволял выявлять лиц с низким уровнем стрессоустойчивости.
В последнее время появились новые перспективы для прогнозирования стрессовых реакций с использованием методов математического анализа вариабельности сердечного ритма. Основоположник этого направления в нашей стране Р. М. Баевский отмечает, что, используя спектральные характеристики сердечного ритма для индикации активности различных контуров управления, можно подойти к решению задачи оценки и прогнозирования функционального состояния организма при информационных нагрузках. Полученные в результате лабораторного моделирования данные в дальнейшем подвергаются математической обработке @@@@@6#####.
В настоящее время все большую популярность приобретает метод множественной регрессии, позволяющий строить достаточно точные математические модели на основании сопоставления большого числа исходных данных @@@@@5, 10#####.
Данный метод позволяет установить статистическую зависимость среднего значения одной случайной величины Y от нескольких других величин X1, X2…, Xn. Эта статистическая зависимость находит свое выражение в уравнении
Y =a0 + a1X1 + a2X2 +… +anXn,
где ai (i =0, n) – искомые параметры.
Покажем основные принципы построения моделей реагирования студентов на эмоциональный стресс на примере прогнозирования величин пульса во время экзамена @@@@@17#####. Первоначально для построения модели было использовано более 70 физиологических и психологических показателей, зарегистрированных у студентов как в состоянии относительного покоя, так и на экзаменах.
После предварительного отбора было оставлено 10 показателей, характеризующих:
+гемодинамику: артериальное диастолическое давление (ADD);
+ритм сердца: HF, pNN50;
+личностные характеристики теста Кеттела: A, F, N, M, Q4;
+страх за свое сердце (S10),
+гендерный признак (Sex).
С учетом этих факторов была построена компьютерная модель состояния частоты сердечных сокращений у студентов на экзамене. Итоговое уравнение связывает ожидаемую частоту пульса на экзамене с психологическими и физиологическими параметрами студентов:
HRE = 73,31 + 1,03 х ADD + 3,77 х HF – 0,60 х pNN50 + + 1,76 х A – 1,86 х F – 2,16 х M – 1,51 х N + + 1,96 х Q4 – 1,49 х S10 – 18,87 х Sex.
Стандартная ошибка равна 9,8 уд/мин.
График соотнесения предсказанных исходя из этой модели и наблюдаемых реально показателей частоты сердечных сокращений, а также вклад отдельных факторов в конечный результаты отображены на рис. 18.
Читать дальше
Конец ознакомительного отрывка
Купить книгу