Перспектива в письменных и устных языках
Emmorey, K., Tversky, B., & Taylor, H. A. (2000). Using space to describe space: Perspective in speech, sign, and gesture. Spatial Cognition and Computation , 2(3), 157–180.
Символическая дистанция
Banks, W. P., & Flora, J. (1977). Semantic and perceptual processes in symbolic comparisons. Journal of Experimental Psychology: Human Perception and Performance , 3, 278–290.
Holyoak, K. J., & Mah, W. A. (1981). Semantic congruity in symbolic comparisons: Evidence against an expectancy hypothesis. Memory and Cognition , 9, 197–204.
Moyer, R. S. (1973). Comparing objects in memory: Evidence suggesting an internal psychophysics. Perception and Psychophysics , 1, 180–184.
Paivio, A. (1978). Mental comparisons involving abstract attributes. Memory and Cognition , 6, 199–208.
Символическая дистанция у других биологических видов
D’Amato, M. R., & Colombo, M. (1990). The symbolic distance effect in monkeys ( Cebus paella ). Animal Learning & Behavior , 18, 133–140.
Gelman, R., & Gallistel, C. R. (2004). Language and the origin of numerical concepts. Science , 306(5695), 441–443.
Транзитивный логический вывод у других биологических видов
Bond, A. B, Kamil, A. C, & Balda, R. P. (2003). Social complexity and transitive inference in corvids. Animal Behavior , 65, 479–487.
Byrne, R. W., & Bates, L. A. (2007). Sociality, evolution and cognition. Current Biology , 17, 714–723.
Byrne, R. W. & Whiten, A. (1988). Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes, and humans . Oxford, England: Clarendon Press.
Davis, H. (1992). Transitive inference in rats ( Rattus norvegicus ). Journal of Comparative Psychology , 106, 342–349.
Grosenick, L., Clement, T. S., & Fernald, R. D. (2007). Fish can infer social rank by observation alone. Nature , 445, 429–432.
MacLean, E. L., Merritt, D. J., & Brannon, E. M. (2008). Social complexity predicts transitive reasoning in Prosimian primates. Animal Behavior , 76, 479–486.
Von Fersen, L., Wynee, C. D. L., Delius, J. D., & Staddon, J. E. R. (1991). Transitive inference formation in pigeons. Journal of Experimental Psychology: Animal Behavior Processes , 17, 334–341.
Система приблизительных количеств у детей и представителей других биологических видов
Brannon, E. M., & Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science , 282(5389), 746–749.
Brannon, E. M., Wusthoff, C. J., Gallistel, C. R., & Gibbon, J. (2001). Numerical subtraction in the pigeon: Evidence for a linear subjective number scale. Psychological Science , 12(3), 238–243.
Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the number domain. Trends in Cognitive Sciences , 13(2), 83–91.
Gallistel, C. R., Gelman, R., & Cordes, S. (2006). The cultural and evolutionary history of the real numbers. Evolution and Culture , 247.
Henik, A., Leibovich, T., Naparstek, S., Diesendruck, L., & Rubinsten, O. (2012). Quantities, amounts, and the numerical core system. Frontiers in Human Neuroscience , 5, 186.
McCrink, K., & Spelke, E. S. (2010). Core multiplication in childhood. Cognition , 116(2), 204–216.
McCrink, K., & Spelke, E. S. (2016). Non-symbolic division in childhood. Journal of Experimental Child Psychology , 142, 66–82.
McCrink, K., Spelke, E. S., Dehaene, S., & Pica, P. (2013). Non-symbolic halving in an Amazonian indigene group. Developmental Science , 16(3), 451–462.
Scarf, D., Hayne, H., & Colombo, M. (2011). Pigeons on par with primates in numerical competence. Science , 334(6063), 1664–1664.
Мозговые субстраты, отвечающие за системы приблизительных количеств и точных чисел
Cohen Kadosh, R., Henik, A., Rubinsten, O., Mohr, H., Dori, H., van de Ven, V., … Linden, D. E. J. (2005). Are numbers special? The comparison systems of the human brain investigated by fMRI. Neuropsychologia , 43, 1238–1248.
Пространственно-числовые ассоциации ответных реакций (SNARC)
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General , 122(3), 371–396.
Tversky, B., Kugelmass, S., & Winter, A. (1991). Cross-cultural and developmental trends in graphic productions. Cognitive Psychology , 23(4), 515–557.
Бо́льшая чувствительность к меньшим значениям (закон Вебера – Фехнера)
Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the number domain. Trends in Cognitive Sciences , 13(2), 83–91.
Бо́льшая чувствительность к меньшим значениям в языке
Talmy, L. (1983). How language structures space. In Spatial orientation (pp. 225–282). Boston, MA: Springer.
Анализ числовой информации в культурах, не имеющих названий для чисел больше трех
Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition , 108(3), 819–824.
Gordon, P. (2004). Numerical cognition without words: Evidence from Amazonia. Science , 306(5695), 496–499.
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science , 306(5695), 499–503.
Повреждение головного мозга может избирательно разрушать систему приблизительных количеств и систему точных чисел
Dehaene, S. (2011). The number sense: How the mind creates mathematics . New York, NY: Oxford University Press.
Lemer, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). Approximate quantities and exact number words: Dissociable systems. Neuropsychologia , 41(14), 1942–1958.
Системы приблизительных количеств и точных чисел взаимодействуют в неповрежденном мозге
Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition , 44, 43–74.
Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology , 103(1), 17–29.
Lonnemann, J., Linkersdörfer, J., Hasselhorn, M., & Lindberg, S. (2011). Symbolic and non-symbolic distance effects in children and their connection with arithmetic skills. Journal of Neurolinguistics , 24(5), 583–591.
Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS One , 6(9), e23749.
Изучение системы приблизительных количеств помогает изучению системы точных чисел
Читать дальше