П Успенский - Новая Модель Вселенной

Здесь есть возможность читать онлайн «П Успенский - Новая Модель Вселенной» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: СПб, Год выпуска: 1993, Издательство: Издательство Чернышева, Жанр: Психология, Религиоведение, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Новая Модель Вселенной: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Новая Модель Вселенной»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

То, что автор нашел во время своих путешествий, упомянутых во «Введении», а также позднее, особенно с 1915 по 1919 гг., будет описано в другой книге.* Настоящая книга была начата и практически завершена до 1914 года. Но все ее главы, даже те, которые уже были изданы отдельными книгами («Четвертое измерение», «Сверхчеловек», «Символы Таро» и «Что такое йога?»), были после этого пересмотрены и теперь более тесно связаны друг с другом. Несмотря на все, что появилось за последние годы в области «новой физики», автор сумел добавить ко второй части десятой главы («Новая модель вселенной») лишь очень немногое. В настоящей книге эта глава начинается с общего обзора развития новых идей в физике, составляющего первую часть главы. Конечно, этот обзор не ставит своей целью ознакомить читателей со всеми теориями и литературой по данному вопросу. Точно так же и в других главах, где автору приходилось ссылаться на какую-то литературу по затронутым им вопросам, он не имел в виду исчерпать все труды, указать на все главные течения или даже сделать обзор важнейших трудов и самых последних идей. Ему достаточно было в таких случаях указать примеры того или иного направления мысли. * Речь идёт о последней книге П.Д. Успенского «В поисках чудесного», вышедшей в свет уже после смерти автора в 1949 году – прим. ред. Порядок глав в книге не всегда соответствует тому порядку, в каком они были написаны, поскольку многое писалось одновременно, и разные места поясняют друг друга. Каждая глава помечена годом, когда она была начата, и годом, когда была пересмотрена или закончена. Лондон, 1930

Новая Модель Вселенной — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Новая Модель Вселенной», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Формы живых тел, цветы, папоротники созданы по тому же принципу, хотя и более сложно. Общий вид дерева, постепенно расширяющегося в ветвях и побегах, есть как бы диаграмма четвертого измерения, a4 . Голые деревья зимой и ранней весной нередко представляют собой очень сложные и чрезвычайно интересные диаграммы четвертого измерения. Мы проходим мимо них, ничего не замечая, так как думаем, что дерево существует в трехмерном пространстве. Такие же замечательные диаграммы можно увидеть в узорах водорослей, цветов, молодых побегов, некоторых семян и т.д. и т.п. Иногда достаточно немного увеличить их, чтобы обнаружить тайны Великой Лаборатории, скрытой от наших глаз.

В книге проф. Блоссфельдта* о художественных формах в природе читатель может найти несколько превосходных иллюстраций к приведенным выше положениям.

* Karl Blossfeldt, Art Forms in Nature. London, 1929.

Живые организмы, тела животных и людей построены по принципу симметричного движения. Чтобы понять эти принципы, возьмем простой схематический пример симметричного движения: представим себе куб, состоящий из двадцати семи кубиков, и будем мысленно воображать, что этот куб расширяется и сокращается. При расширении все двадцать шесть кубиков, расположенные вокруг центрального, будут удаляться от него, а при сокращении опять к нему приближаться. Для удобства рассуждения и для большего сходства нашего куба с телом, состоящим из молекул, предположим, что кубики измерения не имеют, что это просто точки. Иначе говоря, возьмем только центры двадцати семи кубиков и мысленно соединим их линиями как с центром, так и между собой.

Рассматривая расширение куба, состоящего из двадцати семи кубиков, мы можем сказать, что каждый из этих кубиков, чтобы не столкнуться с другими и не помешать их движению, должен двигаться, удаляясь от центра, т.е. по линии, соединяющей его центр с центром центрального кубика. Это – первое правило:

При расширении и сокращении молекулы движутся по линиям, соединяющим из с центром.

Далее мы видим в нашем кубе, что не все линии, соединяющие двадцать шесть точек с центром, равны. Линии, которые идут к центру от точек, лежащих на углах куба, т.е. от центра угловых кубиков, длиннее линий, которые соединяют с центром точки, лежащие в центрах шести квадратов на поверхностях куба. Если мы предположим, что межмолекулярное пространство удваивается, то одновременно увеличиваются вдвое все линии, соединяющие двадцать шесть точек с центром. Линии эти не равны, следовательно молекулы движутся не с одинаковой скоростью, – одни медленнее, другие быстрее, при этом находящиеся дальше от центра движутся быстрее, находящиеся ближе – медленнее. Отсюда можно вывести второе правило:

Скорость движения молекул при расширении и сокращении тела пропорциональна длине линий, соединяющих эти молекулы с центром.

Наблюдая расширение куба, мы видим, что расстояние между всемидвадцатью семью кубиками увеличилось пропорционально прежнему.

Назовем а – отрезки, соединяющие 26 точек с центром, и б – отрезки, соединяющие 26 точек между собой. Построив внутри расширяющегося и сокращающегося куба несколько треугольников, мы увидим, что отрезки б удлиняются пропорционально удлинению отрезков а . Из этого можно вывести третье правило:

Расстояние между молекулами при расширении увеличивается пропорционально их удалению от центра.

Иными словами, если точки находятся на равном расстоянии от центра, они и останутся на равном расстоянии от него; а две точки, находившиеся на равном расстоянии от третьей, останутся от ней на равном расстоянии. При этом, если смотреть на движение не со стороны центра, а со стороны какой-нибудь из точек, будет казаться, что эта точка и есть центр, от которого идет расширение, – будет казаться, что все другие точки отдаляются от нее или приближаются к ней, сохраняя прежнее отношение к ней и между собой, а она сама остается неподвижной. «Центр везде»!

Последнее правило лежит в основе законов симметрии в строении живых организмов. Но живые организмы строятся не одним расширением. Сюда входит элемент движения во времени. При росте каждая молекула описывает кривую, получающуюся из комбинации двух движений в пространстве и времени. Рост идет в том же направлении, по тем же линиям, что и расширение. Поэтому законы роста должны быть аналогичны законам расширения. Законы расширения, в частности, третье правило, гарантируют свободно расширяющимся телам строгую симметрию: если точки, находившиеся на равном расстоянии от центра, будут всегда оставаться от него на равном расстоянии, тело будет расти симметрично.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Новая Модель Вселенной»

Представляем Вашему вниманию похожие книги на «Новая Модель Вселенной» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Виктория Мингалеева - Красота. Новая модель
Виктория Мингалеева
Отзывы о книге «Новая Модель Вселенной»

Обсуждение, отзывы о книге «Новая Модель Вселенной» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x