Ключевые слова:искусственный интеллект, машинное обучение, осознанность, групповое принятие решений, каузальная атрибуция, социальное доверие, толерантность к неопределенности, архитектура выбора.
Среди технологий, стремительно меняющих повседневную жизнь людей, системы на основе «слабого» искусственного интеллекта занимают особое место. Во-первых, в эпоху, когда технологический оптимизм сопровождается социальным пессимизмом, именно с этими технологиями связана надежда на улучшение работы социальных институтов и оздоровление целых сфер жизни общества, таких как государственное управление, коммунальные услуги, общественный транспорт, здравоохранение, даже образование и СМИ. Машинное обучение, анализ больших данных и блокчейн рассматриваются как своего рода лекарство или даже протез для слабеющего социального доверия. Во-вторых, существует возможность появления «сильного» искусственного интеллекта, который, в отличие от других технологий, не только в массовом сознании, но и среди экспертов наделяется характеристиками субъекта, представляется как сила, способная со временем подчинить себе человека (Turchin, Denkenberger, 2018). Как показывают проведенные нами эмпирические исследования, отношение молодежи к технологиям искусственного интеллекта существенно различается в зависимости от сферы их применения, при этом наибольшие опасения вызывают автономные киберфизические системы, предполагающие вмешательство в человеческое тело и в процессы принятия решений (Нестик, 2018).
Одна из причин тревоги по поводу развития искусственного интеллекта связана с так называемой проблемой «черного ящика»: не только политики и обыватели, но и сами разработчики не могут в точности объяснить логику, лежащую в основе тех или иных заключений, сделанных самообучающейся нейросетью (Knight, 2017). Влияние таких алгоритмов на общество трудно оценить, так как их коды защищены коммерческой тайной, а истинные цели часто не ясны.
Искусственный интеллект, интернет вещей и анализ больших данных являются ключевой частью того пакета цифровых технологий, которые лежат в основе автоматизации, «платформенной экономики» и сдвига границ отраслей. По мнению экспертов Price Waterhouse Coupers, влияние этих технологий на общество не будет мгновенным, и будет нарастать в виде трех волн автоматизации. Первая волна завершится к середине 2020-х гг., она охватила прежде всего финансовый, IT и телекоммуникационный секторы и затрагивает в основном легко автоматизируемые операции с доступными данными. Вторая волна к концу 2020-х будет связана с оснащением людей-операторов новыми физическими и когнитивными возможностями: охватит производство, хранение и доставку, а также сферу розничных продаж. Наконец, третья волна к середине 2030-х гг. будет связана с появлением автономных систем (например, транспортных), где принятие решений в меняющейся обстановке будет доверено искусственному интеллекту. Эти изменения по-разному ощущаются людьми в зависимости от страны проживания и профессии, например, ожидается, что в Юго-Восточной Азии, Северной Европе и России влияние автоматизации затронет меньше рабочих мест по сравнению с Восточной Европой и США (Parlett et al., 2018).
В отличие от европейских стран и США, в российском массовом сознании последствия автоматизации труда пока недооцениваются . Как показал опрос россиян, проведенный ВЦИОМ по репрезентативной выборке в декабре 2017 г., 74% убеждены, что в обозримом будущем их рабочее место не смогут занять роботы (Роботизация работы…, 2017). При этом 73% вообще никогда не задумывались об этой проблеме. Большинство (62%) считают тенденцию к замене людей на рабочих местах роботами и алгоритмами неправильной, причем наиболее категорично это мнение отстаивает именно молодежь, а не старшее поколение (так считают 70% в группе 18–24 лет по сравнению с 55% в группе 45–59 лет).
Внедрение технологий «слабого», специализированного искусственного интеллекта (ИИ) в повседневную жизнь ставит перед психологической наукой и практикой целый ряд проблем, актуальность которых будет нарастать в ближайшие годы. Анализ этих проблем позволяет сформулировать несколько перспективных направлений социально-психологических исследований .
Чрезвычайно актуальным сегодня является исследование последствий использования алгоритмов для когнитивного и эмоционального развития личности. Например, остается не вполне ясным, как распределение когнитивных задач между ИИ и человеком повлияет на развитие интеллекта и когнитивный стиль. Например, как изменится роль эмоций в человеческом познании? Повысит ли использование систем распознавания лиц эмоциональный интеллект человека? С другой стороны, нужно разобраться в том, как особенности мышления самих разработчиков и пользователей самообучающихся алгоритмов влияют на окружающий нас, все более программируемый мир. Как будет развиваться ИИ в культурах с холистическим и аналитическим мышлением?
Читать дальше