Конечно, стандартная модель явилась огромным шагом вперед по сравнению с путаницей приближенных симметрий, плохо сформулированных динамических предположений и голых фактов, которую изучали в институте физики моего поколения. Но очевидно, что стандартная модель не является окончательным ответом, и чтобы выйти за ее пределы, нужно понять все ее недостатки.
Тем или иным образом все проблемы стандартной модели упираются в явление, названное спонтанным нарушением симметрии . Открытие этого явления, сначала в физике твердого тела, а затем и в физике частиц, стало одним из великих достижений науки ХХ в. Главный успех был достигнут в объяснении различий между слабыми и электромагнитными взаимодействиями, поэтому для объяснения явления спонтанного нарушения симметрии лучше всего начать с электрослабой теории.
Эта теория является частью стандартной модели, имеющей дело со слабыми и электромагнитными взаимодействиями. Она основана на точном принципе симметрии, утверждающем, что законы природы не меняют своей формы, если заменить поля электронов и нейтрино на смешанные поля, например, взять одно поле, состоящее на 70 % из нейтрино и на 30 % из электрона, и другое поле, состоящее на 30 % из нейтрино и 70 % из электрона. При этом одновременно необходимо в тех же пропорциях перемешать поля других семейств частиц, например, кварков u и d . Такой принцип симметрии называется локальным, поскольку предполагается, что законы природы остаются неизменными, даже если смесь полей будет меняться со временем или от точки к точке в пространстве. Но есть и другое семейство частиц, существование которого диктуется указанным принципом симметрии, примерно таким же образом, как существование гравитационного поля диктуется симметрией между разными координатными системами. Это семейство состоит из фотона и частиц W , Z , причем эти поля также должны перемешиваться друг с другом, если мы перемешиваем поля электронов и нейтрино и поля кварков. Обмен фотонами обуславливает электромагнитные силы, а обмен частицами W и Z генерирует слабые ядерные силы, так что симметрия между электроном и нейтрино является также симметрией между электромагнитными и слабыми ядерными силами.
Однако подобная симметрия определенно отсутствует в окружающей нас природе, и поэтому-то ее так долго не могли открыть. Например, электроны и частицы W , Z обладают массами [162], а нейтрино и фотоны не имеют массы. (Слабые силы во много раз слабее электромагнитных именно благодаря большой массе W , Z .) Иными словами, симметрия, связывающая электроны, нейтрино и другие частицы, есть свойство основных уравнений стандартной модели, определяющих свойства элементарных частиц, но в то же время, эта симметрия не выполняется для решений этих уравнений, т.е. для свойств самих частиц.
Чтобы понять, как это возможно, чтобы уравнения имели симметрию, а решения – нет, предположим, что наши уравнения полностью симметричны относительно двух типов частиц (например, u -, d -кварков), и мы хотим найти решения этих уравнений, определяющие массы обеих частиц. Можно было бы предположить, что симметрия между двумя типами кварков приведет к тому, что и их массы окажутся одинаковыми, но это не единственная возможность [163]. Симметрия уравнений не исключает возможности того, что решение будет давать массу u -кварка больше, чем масса d -кварка, но при этом обязательно должно существовать второе решение уравнений, дающее массу d -кварка на столько же большую массы u -кварка. Таким образом, симметрия уравнений необязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности решений. В этом простом примере реальные свойства кварков будут соответствовать одному или другому решению, демонстрируя нарушение симметрии исходной теории. Заметим, что на самом деле безразлично, какое из двух решений реализуется в природе, если единственной разницей между кварками u и d является разница в их массах, тогда разница между двумя решениями будет соответствовать тому, какой из кварков мы назовем u , а какой d . Природа, как мы ее знаем, соответствует одному решению всех уравнений стандартной модели, при этом безразлично какому , если только все решения связаны точными принципами симметрии.
В подобных случаях говорят, что симметрия нарушена, хотя лучше было бы говорить, что симметрия «спрятана» , так как уравнения продолжают обладать симметрией, и именно уравнения определяют свойства частиц. Описанное явление называется спонтанным нарушением симметрии , так как ничто не нарушает симметрию уравнений теории, а нарушение симметрии возникает спонтанно в различных решениях уравнений.
Читать дальше