Александр Поляков - Terra Urbana. Города, которые мы п…м

Здесь есть возможность читать онлайн «Александр Поляков - Terra Urbana. Города, которые мы п…м» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Жанр: Прочая научная литература, foreign_publicism, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Terra Urbana. Города, которые мы п…м: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Terra Urbana. Города, которые мы п…м»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга о будущем. О том, как простые транспортные решения меняют ход социальной истории. О том, что человек – животное не только разумное и общественное, но и территориальное: его коллективная жизнь неразрывно связана с развитием искусственного урбанистического ландшафта. О том, как треугольные агломерации способны повышать связность общественной системы, экономить время и нивелировать расстояния. О счастье, рисках и ландшафтах будущего, которое мы построим или потеряем.
В формате PDF A4 сохранен издательский макет.

Terra Urbana. Города, которые мы п…м — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Terra Urbana. Города, которые мы п…м», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Показательным в этой связи является заочный спор выдающегося историка математики Бартеля Ван дер Вардена с выдающимся математиком Георгом Кантором. Ван дер Варден критикует широко распространенное представление о том, что египтяне знали пифагоровы числа 3, 4 и 5 (т. е. простейший случай последовательности чисел a, b, c, удовлетворяющих правилу a 2 +b 2 =c 2 ) и использовали их при построении храмов и пирамид, углы при основании которых «большей частью действительно являются прямыми». Это представление восходит к предположению Кантора, который, по мысли Ван дер Вардена, просто перенес свое современное представление на устройство мышления и культуры древних Египтян: «…я (Кантор) не могу представить себе никакого другого способа получения прямого угла при помощи натянутых веревок, как посредством трех веревок длиной в 3, 4 и 5, которые образуют треугольник. Отсюда следует, что египтяне должны были знать этот треугольник» [75] Ван дер Варден Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 2007, с. 13. .

Мы остановились на этом примере по нескольким причинам. Во-первых, он хорошо иллюстрирует «естественность» переноса привычных нам представлений на способ рассуждения других людей и обществ: интуитивно мы считаем их такими же, и нам крайне сложно даже просто всерьез допустить, что они видят мир и пользуются им по-другому, не говоря уж о том, чтобы понять, как именно они это делают. Во-вторых, несмотря на методологическую правоту ван дер Вардена, последующие исследования подтверждают историческую правоту отвергаемой им гипотезы Кантора – египтяне, судя по имеющимся археологическим данным, действительно знали эту простейшую тройку пифагоровых чисел (известных также как «египетские числа») и правило построения с их помощью прямоугольного треугольника. Но в то же время, в-третьих, из умения египтян пользоваться простейшим случаем треугольников Герона (треугольников с целочисленными сторонами и площадями) вовсе не следует владение ими теоретическим правилом, известным нам как теорема Пифагора.

Наконец, в-четвертых, – и это самое важное – спор о египтянах и пифагоровых числах иллюстрирует интуицию «технического», практического характера математики (как минимум на этапе, предшествующим ее оформлению в самостоятельную теоретическую дисциплину). Эта черта, по-видимому, связанная с происхождением математики из решения повседневных, бытовых инженерных или иных практически значимых задач (см. выше), закрепилась в характерном для европейских культур двойственном понимании математики как одновременно метода разума и «языка природы» – метафора, со времен высказавшего ее Галилея [76] «Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки ее – треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова: без них он был бы обречен блуждать в потемках по лабиринту». Галилей Г. Пробирных дел мастер. М., 1987, с. 41. , поддерживавшая веру ученых в способность познать природу: ведь если она написана на том языке, на котором свойственно думать нашему разуму, она определенно может быть прочитана. И если бы руки инженеров были также точны и совершенны, как руки Творца, совершенство творения которого хоть и неповторимо, но зато умопостигаемо, то умозрительная математика совпала бы с материальным порядком действительности: «Так как в работе ремесленники довольствуются лишь малой степенью точности, то образовалось мнение, что Механика тем и отличается от Геометрии, что все вполне точное принадлежит Геометрии, менее точное относится к Механике. Но погрешности заключаются не в самом ремесле или искусстве, а принадлежат исполнителю работы: кто работает с меньшей точностью, тот худший механик, и если бы кто-нибудь смог исполнять работу с совершеннейшей точностью, тот и был бы наилучшим из всех механиков» [77] Ньютон И. Математические начала натуральной философии. Оптика. Оптические лекции (избранные места). Л., 1929, с. 29. . С цитированного рассуждения о связи механики, геометрии и физики начинается предисловие к самому значительному сочинению эпохи европейской Научной революции – «Математическим началам натуральной философии» И. Ньютона.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Terra Urbana. Города, которые мы п…м»

Представляем Вашему вниманию похожие книги на «Terra Urbana. Города, которые мы п…м» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Александр Поляков
Александр Поляков - Без права выбора
Александр Поляков
libcat.ru: книга без обложки
Александр Подольский
Александр Поляков - Покушение на ГОЭЛРО
Александр Поляков
Александр Поляков - Сад памяти (Очерки)
Александр Поляков
Александр Поляков - Люди и Боги
Александр Поляков
Отзывы о книге «Terra Urbana. Города, которые мы п…м»

Обсуждение, отзывы о книге «Terra Urbana. Города, которые мы п…м» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x