Джим Холт - Идеи с границы познания. Эйнштейн, Гёдель и философия науки

Здесь есть возможность читать онлайн «Джим Холт - Идеи с границы познания. Эйнштейн, Гёдель и философия науки» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Идеи с границы познания. Эйнштейн, Гёдель и философия науки: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Идеи с границы познания. Эйнштейн, Гёдель и философия науки»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Язык науки, как язык музыки или архитектуры, – особая знаковая система, наделенная философским смыслом. Не каждый способен понять музыкальную гармонию, не всякий разглядит античное изящество и символичность простой формулы. Между тем Платон считал, что у того, кто способен оценить вечную и совершенную красоту математических наук, «возникает желание ее воспроизвести – не биологически, а интеллектуально, “разрешиться от бремени” прекрасными идеями и теориями». И вдохновленные ею ученые стали героями этой книги. Чего стоят только «фракталы Мандельброта с их изысканными узорами», абстрактная алгебра Эмми Нётер или Гёделева вселенная без времени.

Идеи с границы познания. Эйнштейн, Гёдель и философия науки — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Идеи с границы познания. Эйнштейн, Гёдель и философия науки», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Увы, во всей этой сложной мозговой механике так и не нашлось эквивалента микросхемы из пятидолларового калькулятора. Из-за этого дефекта изучение страшной четверки – «Скольжения, Причитания, Умиления и Изнеможения», как пошутил Льюис Кэрролл (пер. Н. Демуровой) – превращается в сущее наказание. Поначалу еще ничего. Числовое чутье позволяет примерно понимать, что такое сложение, поэтому еще до школы дети находят простые способы складывать числа. Например, если попросить ребенка сосчитать, сколько будет 2+4, он начнет с первого слагаемого, а потом досчитает до второго: «Два, два и один – три, два и два – четыре, два и три – пять, два и четыре – шесть, шесть!» Но с умножением все иначе. Умножение – занятие противоестественное, как часто приговаривает Деан, а все потому, что наш мозг для такого не оборудован. Тут не помогут ни чутье, ни прибавление по одному, поэтому таблицу умножения приходится хранить в мозге в вербальном виде, как последовательность слов. Список таких арифметических фактов не так уж длинен, но страшно коварен: одни и те же числа повторяются по много раз в разном порядке, а фразы частично перекрываются, и в них возникают ненужные обманчивые рифмы (доказано, что билингвы, когда умножают, переходят на язык, на котором учились в школе). Человеческая память, в отличие от компьютерной, в ходе эволюции приучилась строить ассоциации, вот почему она так плохо подходит для арифметики, где нельзя, чтобы разные фрагменты знаний интерферировали друг с другом: если хочешь вспомнить, сколько будет 7×6, рефлекторно активируются знания о 7+6 и 7×5, а это может привести к катастрофе. Так что умножение – это двойной кошмар: мало того что оно не поддается числовому чутью, его еще приходится усваивать в форме, которая противоречит организации нашей памяти, развившейся в ходе эволюции. В результате взрослые при умножении однозначных чисел ошибаются в 10–15 % случаев. А если речь идет о самых трудных примерах, скажем, 7×8, доля ошибок превышает 25 %.

Природная неприспособленность к более сложным математическим процессам натолкнула Деана на вопрос, стоит ли заставлять детей учиться процедурам вроде деления в столбик. Ведь есть выход из положения – электронный калькулятор. «Дайте пятилетнему ребенку калькулятор, и вы научите его дружить с числами, а не ненавидеть их», – писал Деан. Избавив ребенка от необходимости тратить сотни часов на заучивание скучных процедур, считает он, калькуляторы дадут ему свободу сосредоточиться на смысле этих процедур, чему при нынешнем образовательном статус-кво не учат.

Казалось бы, такое отношение рисует Деана как самого настоящего сторонника «реформаторов математики» среди педагогов и самого настоящего врага родителей, которые хотят, чтобы учителя математики их детей «вернулись к основам». Но когда я спросил Деана, как он относится к реформе математики, он не проявил особой симпатии к этому направлению. «Мысль, что все дети разные и что каждый должен открывать все по-своему – нет, я с этим не согласен, – сказал он. – Я уверен, что организация мозга у всех одинаковая. Мы видим это у младенцев, видим и у взрослых. В целом все мы идем по одной дороге с небольшими отклонениями». Деан искренне восхищается математическими программами азиатских стран, в том числе китайской и японской, которые обеспечивают детям досконально структурированный опыт, предвосхищают диапазон их реакции на каждом этапе и обеспечивают задачами, составленными так, чтобы минимизировать количество ошибок. «К этому мы пытаемся вернуться и во Франции», – сказал он. Совместно с коллегой Анной Уилсон Деан разработал компьютерную игру The Number Race , чтобы помочь детям при дискалькулии. Программа эта самообучающаяся, она выявляет задачи, где ребенок чувствует себя неуверенно, и подстраивает уровень сложности, чтобы доля верных решений оставалась на уровне 75 % – это не дает ребенку опустить руки.

Организация мозга у нас и в самом деле общая, однако сохраняются и культурные различия, диктующие нам, как обращаться с числами, и они не ограничиваются стенами класса. Эволюция снабдила нас приблизительной числовой осью, но чтобы числа обрели точность, кристаллизовались, по выражению Деана, нужна система символов. В языке амазонского племени мундуруку, которое изучали в последнее время Деан и его коллеги, особенно лингвист Пьер Пика, числительные есть только для чисел от одного до пяти (причем слово, которым мундуруку обозначают «пять», буквально значит «одна ладонь»). И даже эти слова для них, судя по всему, лишь примерные указания: если показать индейцу мундуруку три предмета, он может сказать, что их три, а может – что четыре. Тем не менее у мундуруку неплохая численная интуиция. «Например, они понимают, что пятьдесят плюс тридцать – это больше шестидесяти, – говорит Деан. – Естественно, они не знают этого на вербальном уровне и не располагают языковыми средствами, чтобы об этом поговорить. Но когда мы показываем им соответствующие множества и преобразования, они сразу понимают, о чем речь».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Идеи с границы познания. Эйнштейн, Гёдель и философия науки»

Представляем Вашему вниманию похожие книги на «Идеи с границы познания. Эйнштейн, Гёдель и философия науки» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Идеи с границы познания. Эйнштейн, Гёдель и философия науки»

Обсуждение, отзывы о книге «Идеи с границы познания. Эйнштейн, Гёдель и философия науки» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x