Анатолий Овчинников - Рассуждения об основах математики

Здесь есть возможность читать онлайн «Анатолий Овчинников - Рассуждения об основах математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, ISBN: 2021, Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Рассуждения об основах математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Рассуждения об основах математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этой книге опровергаются некоторые устойчивые заблуждения и мифы, касающиеся оснований математики. Изложение ведется с позиций диалектического материализма. Многие из нас интуитивно понимают, что с неевклидовыми геометриями и теорией относительности "что-то не так". В книге показано, что это "что-то не так" возникает из-за той идеалистической позиции, которую занимают математики и физики-теоретики при изучении законов природы. Книга есть логическое продолжение рассуждений, начало которым было положено в уже изданной книге: Овчинников А. Н. Рассуждения об основах физики. Москва; ЛитРес: Самиздат, 2020.

Рассуждения об основах математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Рассуждения об основах математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Анатолий Овчинников

Рассуждения об основах математики

1. Введение

Эта книга есть логическое продолжение рассуждений о связи математики и опыта. Начало этим рассуждениям было положено в недавно вышедшей в свет книге [1], в которой сейчас для нас наиболее важны пятая и шестая её главы. Затем появились ещё две важные по этой теме статьи [2], [3]. Все изложенное в этой книге и в этих статьях, мы будем считать известным, а потому настоятельно рекомендуется сначала ознакомиться с их содержанием. Сейчас становится целесообразным объединить всё, имеющее отношение к основам математики в одну книгу, что здесь и сделано. Заметим, что основания физики и основания математики на деле не различаются; в их основе лежат экспериментальные факты. Но физика использует математический аппарат, а поэтому различие между физикой и математикой (в их основаниях) становится практически неразличимым. В такой ситуации трудно различить: где начинается (и кончается) физика, а где начинается математика, и наоборот. Вот почему мы полагаем, что и книгу [1] и данную здесь книгу нужно рассматривать как единое целое.

Мы продолжаем здесь опровергать некоторые устойчивые заблуждения и мифы, имеющие давнее происхождение. Многие из нас интуитивно понимают, что с неевклидовыми геометриями и теорией относительности «что-то не ладно». В этой книге мы покажем, что это «что-то не ладно» возникает из-за той идеалистической позиции, которую занимают математики и физики-теоретики при изучении законов природы. Мы здесь будем говорить лишь о традиционной геометрии и математике, то есть о тех, с которых обычно начинается их изучение в средней школе. В частности, в них имеются понятия геометрической фигуры, числа, имеются знаки: <, =, >. Имеются также простейшие операции: сложение, умножение, вычитание, деление. Однако читатель, ознакомившись с изложенным здесь, легко увидит, что все сказанное в книге будет справедливо и для других разделов математики.

Кратко напомним самое важное для нас здесь из [1].

а) геометрия начинается с экспериментальных фактов, называемых иначе построениями

б) определения и аксиомы геометрии и математики есть рациональное осмысление экспериментальных фактов (построений)

в) критерием существования геометрической фигуры в реальном пространстве является аксиома существования

г) в реальном пространстве существует только одна геометрия это – евклидова геометрия.

Добавим ещё здесь, что в книге часто будут напоминаться банальные истины, но они будут чередоваться с тем, о чем мы ещё не думали. Но так бывает всегда, когда речь заходит об основах науки. Банальные истины начинают забываться в процессе длительного обучения, а потому их приходится напоминать.

Основная часть

1. Рациональное и иррациональное осмысление экспериментальных фактов

Мы не будем здесь давать строгое определение понятию рационального осмысления экспериментальных фактов (оно вряд ли возможно). Мы ограничимся здесь лишь некоторыми примерами из науки рационального и нерационального (иррационального) осмысления экспериментальных фактов.

Пример 1. Геометрия. Геометр строит фигуры: точки, прямые, окружности и так далее. Существование всех этих реальных фигур есть экспериментальный факт. Как осмысливает эти экспериментальные факты геометр? Он говорит: «Я допущу, что в реальном пространстве существуют не только те реальные фигуры, которые я построил, но и идеальные фигуры, которые я буду строить, имея также для этого идеальные инструменты. А это значит, что могут быть построены и существуют идеальные фигуры (идеальная точка, идеальная прямая, идеальная окружность и так далее)». Это – рациональное осмысление экспериментальных фактов. В самом деле. Существование идеальных фигур в реальном пространстве нисколько не меняет ни свойств самого пространства, ни свойств самих реальных фигур. Реальные и идеальные фигуры существуют в одном (общем для них) реальном пространстве, нисколько не мешая друг другу. А вот изучать свойства фигур целесообразно начинать со свойств идеальных фигур. После того, как это будет сделано, достаточно сравнить свойства реальных фигур со свойствами идеальных фигур. И что же мы увидим? Мы увидим, что свойства реальных фигур тем меньше отличаются от свойств идеальных фигур, чем точнее построена эта реальная фигура. И отличие свойств реальной фигуры от идеальной всегда может быть выражено с известной степенью точности. Во всех этих рассуждениях особо следует подчеркнуть важность материалистического подхода к изучению законов реального пространства. Началом всему являются экспериментальные факты. Не было бы этих фактов, нечего было бы и осмысливать.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Рассуждения об основах математики»

Представляем Вашему вниманию похожие книги на «Рассуждения об основах математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Анатолий Овчинников - Рассуждения об основах физики
Анатолий Овчинников
Отзывы о книге «Рассуждения об основах математики»

Обсуждение, отзывы о книге «Рассуждения об основах математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x