1 ...6 7 8 10 11 12 ...15 ⚪ ⚪ ⚪
Давайте сопоставим правила классической и квантовой механики и сравним их. Состояние классической системы описывается координатами и скоростью всех движущихся в ней элементов. Чтобы проследить ее эволюцию, представим себе примерно следующую процедуру:
Правила классической механики
1. Подготавливаем систему, фиксируя конкретные координаты и скорость для каждой из ее частей.
2. Следим за эволюцией системы в соответствии с ньютоновскими законами движения.
Вот и все. Дьявол, естественно, в деталях. В некоторых классических системах движущихся элементов очень много.
В свою очередь, в типичном учебнике по квантовой механике описание правил дается в двух частях. В первой части имеем структуру, строго эквивалентную той, что представлена в классическом случае. Квантовые системы описываются волновыми функциями, а не координатами и скоростями. Точно как в классической механике ньютоновские законы движения управляют эволюцией состояния системы, в квантовой системе есть уравнение, описывающее, как эволюционирует волновая функция. Оно называется уравнением Шрёдингера. Уравнение Шрёдингера можно сформулировать так: «Скорость изменения волновой функции пропорциональна энергии квантовой системы». Чуть более строгая формулировка такова: волновая функция может описывать состояния с различными энергиями, и, согласно уравнению Шрёдингера, высокоэнергетические части волновой функции эволюционируют стремительно, а низкоэнергетические – очень медленно. Что, если подумать, вполне логично.
Для наших целей важно лишь то, что существует уравнение, позволяющее спрогнозировать, как волновые функции гладко [3] Здесь и далее в книге под гладкостью эволюции волновой функции подразумевается ее непрерывное и плавное изменение с течением времени, без скачков или коллапса. – Примеч. науч. ред.
эволюционируют с течением времени. Эта эволюция столь же неизбежна и предсказуема, как и движение тел в соответствии с законами Ньютона в классической механике. Пока – ничего экстраординарного.
Правила квантовой механики (часть первая)
1. Подготавливаем систему, фиксируя конкретную волновую функцию Ψ.
2. Далее система эволюционирует согласно уравнению Шрёдингера.
Пока все нормально – эти элементы квантовой механики строго соотносятся с их классическими предшественниками. Вот только правила классической механики на этом заканчиваются, а в игру вступают дополнительные правила квантовой.
Все эти дополнительные правила связаны с измерением. Измеряя, например, спин или координату частицы, мы, согласно квантовой механике, в любом случае получим лишь определенные, возможные в данном случае результаты. Конкретный результат спрогнозировать не выйдет, но можно рассчитать вероятность получения каждого из возможных результатов. После того как измерение будет выполнено, волновая функция коллапсирует , превращаясь в совершенно новую функцию, в которой все вероятности сконцентрированы вокруг именно того результата, который вы только что получили. Таким образом, измеряя квантовую систему, максимум, на что вы можете рассчитывать – это возможность спрогнозировать вероятность различных ее результатов. Но если вы сразу повторите измерение той же самой величины, то раз за разом будете получать один и тот же результат – волновая функция сколлапсировала в него.
И вот самый сок нашего разбора.
Правила квантовой механики (часть вторая)
3. Существуют определенные наблюдаемые величины, которые по желанию можно измерить, – например координата частицы. По итогам измерения ее координаты мы получим вполне определенный результат.
4. Вероятность получения любого конкретного результата вычисляется исходя из волновой функции. Волновая функция связывает амплитуду с каждым из возможных результатов измерения; вероятность любого результата есть квадрат амплитуды волновой функции.
5. После измерения волновая функция коллапсирует. Как бы ни был широк разброс ее значений изначально, после измерения все ее значения концентрируются в области того результата, который мы получили при измерении.
В рамках современного университетского курса студенты при первом знакомстве с квантовой механикой изучают ту или иную версию пяти этих правил. Идеология, лежащая в основе такой подачи материала, – считать измерение фундаментальным процессом, полагая, что коллапс волновой функции происходит вместе с актом наблюдения, и не задавать вопросов о том, что при этом происходит «за кулисами». Такой подход иногда называют копенгагенской интерпретацией квантовой механики. Но ученые, в том числе копенгагенские физики, предположительно сформулировавшие такую интерпретацию, расходятся во мнениях о том, что же на самом деле должно обозначаться этим термином. Так что мы можем считать копенгагенскую интерпретацию просто «хрестоматийной трактовкой квантовой механики».
Читать дальше