Алла Казанцева - Физика в быту

Здесь есть возможность читать онлайн «Алла Казанцева - Физика в быту» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2022, ISBN: 2022, Жанр: Прочая научная литература, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика в быту: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика в быту»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

У многих физика ассоциируется с малопонятным школьным предметом, который не имеет отношения к жизни. Но, прочитав эту книгу, вы поймете, как знание физических законов помогает находить ответы на самые разнообразные вопросы, например: что опаснее для здоровья – курение, городские шумы или электромагнитное загрязнение? Почему длительные поездки на самолетах и поездах утомляют? Как связаны музыка и гениальность? Почему работа за компьютером может портить зрение и как этого избежать? Что представляет опасность для космонавтов при межпланетных путешествиях? Как можно увидеть звук? Почему малые дозы радиации полезны, а большие губительны? Как связаны мобильный телефон и плохая память? Почему правильно подобранное освещение – залог хорошей работы и спокойного сна? Когда и почему появились радиоактивные дожди?
В формате a4.pdf сохранен издательский макет.

Физика в быту — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика в быту», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Самое интересное: если вы просто ущипнёте струну, то многие обертоны возбудятся одновременно, и соответствующие им движения наложатся друг на друга, в результате форма струны в процессе колебаний будет уже не синусоидальной, а более сложной. Это как «спектральный анализ наоборот»: сложение простых гармоник даёт в результате сложное колебание.

Ущипнув струну, мы услышим музыкальный звук, высота тона которого соответствует основной частоте f 0, а наличие обертонов придаст звуку тембральный окрас. Щипая струну в разных местах, мы меняем амплитуды обертонов и, значит, меняем тембр. Например, щипок ровно посередине струны исключает из движений чётные гармоники 2 f 0, 4 f 0и т. д., так как для этих гармоник средняя точка струны должна быть неподвижна.

Рис 5 Простейшие колебания струны первая вторая и третья гармоники Какими - фото 5

Рис. 5. Простейшие колебания струны (первая, вторая и третья гармоники)

Какими параметрами струны определяется её основная частота? Как видно из рисунка 5, чем длиннее струна, тем больше длина волны первой гармоники, а значит, частота колебаний меньше (низким звукам рояля соответствуют самые длинные струны, высоким – самые короткие). Основная частота f 0зависит также от натяжения струны: увеличивая натяжение, мы увеличиваем основную частоту (именно путём изменения натяжения струн настройщик добивается нужной частоты звука).

Как и для бегущих волн, длина стоячей волны λ связана с частотой колебаний частиц и скоростью v распространения волны универсальной формулой λ = v/f . Длина волны первой (основной) гармоники, как видно из рисунка 5, в два раза больше длины l струны: λ = 2l . Так что основная частота струны f 0= v/λ = v/2l . Увеличение натяжения струны приводит к увеличению скорости волн v , а значит, и к увеличению основной частоты.

Ещё одним простым телом, рождающим музыкальные звуки, являются цилиндрические трубы, ширина которых гораздо меньше длины (вспомним, например, трубы оргáна). Главным звучащим телом в трубах является наполняющий их воздух. Возбуждая на одном конце трубы движение воздуха с помощью вибратора, мы приводим в колебательное движение весь столб воздуха в трубе, и он рождает звуковую волну, бегущую от трубы к вашему уху. Основная частота f 0определяется длиной воздушного столба: чем длиннее труба, тем ниже её звук, как и для струны. И также наряду с основной частотой возбуждаются обертоны с кратными частотами.

Струны и воздушные трубы – основа всех музыкальных инструментов. Именно они рождают музыкальные звуки. Предметы же более сложных форм являются источниками немузыкальных звуков.

Можно ли увидеть звук?

Любой твёрдый предмет будет издавать те или иные звуки, если по нему ударять или, к примеру, водить по нему смычком. И у любого предмета конечных размеров, как и у струн, есть характерный набор собственных колебаний – возможных простейших движений его частиц. У большинства объемных тел частоты собственных колебаний образуют непрерывный спектр в пределах определённой полосы частот, зачастую весьма широкой, то есть воспринимаются ухом как шум. Например, ударив по столу, вы слышите звук, создаваемый возникающими колебаниями стола, но высоту тона определить не можете. Можно только предсказать, что шум от удара по массивному шкафу будет более низкочастотным, чем от удара по небольшому столику.

Немецкий физик и музыкант Эрнест Хладни сумел сделать видимыми собственные колебания плоских пластин разной формы (круглых, квадратных и прочих). Для этого он возбуждал в них колебания с помощью скрипичного смычка (рис. 6). При этом пластины издавали немузыкальные звуки разной степени «противности». На поверхность пластин он насыпал мелкий песок, который слетал с активно колеблющихся областей и концентрировался в тех местах, которые оставались практически неподвижными. Проводя смычком по краю пластины в разных местах, под разными углами и с различной скоростью, можно возбуждать различные собственные колебания и получать самые разные картины: иногда простые, иногда сложные, иногда красивые, иногда беспорядочные. Каждому типу колебаний соответствуют определённая «песочная картина» и своё неповторимое звучание.

Рис 6 Примеры фигур Хладни полученных с помощью насыпанного на поверхность - фото 6 Рис 6 Примеры фигур Хладни полученных с помощью насыпанного на поверхность - фото 7

Рис. 6. Примеры фигур Хладни, полученных с помощью насыпанного на поверхность колеблющихся пластин песка

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика в быту»

Представляем Вашему вниманию похожие книги на «Физика в быту» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика в быту»

Обсуждение, отзывы о книге «Физика в быту» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x