Алла Казанцева - Физика в быту

Здесь есть возможность читать онлайн «Алла Казанцева - Физика в быту» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2022, ISBN: 2022, Жанр: Прочая научная литература, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика в быту: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика в быту»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

У многих физика ассоциируется с малопонятным школьным предметом, который не имеет отношения к жизни. Но, прочитав эту книгу, вы поймете, как знание физических законов помогает находить ответы на самые разнообразные вопросы, например: что опаснее для здоровья – курение, городские шумы или электромагнитное загрязнение? Почему длительные поездки на самолетах и поездах утомляют? Как связаны музыка и гениальность? Почему работа за компьютером может портить зрение и как этого избежать? Что представляет опасность для космонавтов при межпланетных путешествиях? Как можно увидеть звук? Почему малые дозы радиации полезны, а большие губительны? Как связаны мобильный телефон и плохая память? Почему правильно подобранное освещение – залог хорошей работы и спокойного сна? Когда и почему появились радиоактивные дожди?
В формате a4.pdf сохранен издательский макет.

Физика в быту — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика в быту», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, длина волны – это минимальное расстояние между частицами среды, колеблющимися синхронно. Длина волны связана с частотой колебаний: чем больше частота, тем меньше в данной среде длина волны. Запомним это!

Длина волны λ равна расстоянию, на которое распространяется волна за время, равное периоду колебаний Т . Если v – скорость распространения волны, то λ = v·T . Частота колебаний f – это величина, обратная периоду:

f = 1/T , поэтому λ = v/f .

Чем больше скорость волны и чем больше период колебаний (то есть меньше частота), тем больше длина волны. Эта формула справедлива для любых волн, как звуковых, так и электромагнитных. Мы ещё не раз её вспомним.

Инфразвуковые низкочастотные волны самые длинные: в воздухе более 20 м и могут достигать сотен метров. Длины волн для ультразвука, наоборот, очень малы: в воздухе менее 15 мм. При ультразвуковой диагностике в медицине применяют волны длиной в доли миллиметра – именно такие короткие волны позволяют заметить в тканях организма неоднородности малого размера (ведь волны любой природы не замечают преград, размер которых гораздо меньше длины волны – так, океанская волна «не заметит» маленький камушек на своём пути). Столь же короткие ультразвуковые волны используют летучие мыши для локации. Ну а для звукового диапазона длины волн в воздухе простираются от 15 мм до 20 метров.

Обратите внимание: длина волны изменяется при переходе волны из одной среды в другую. Так, в воде или другой среде все длины волн уменьшаются во столько же раз, во сколько раз увеличивается скорость звука (в воде – в 4,4 раза).

Частота же колебаний частиц в волне – это её неизменяющаяся характеристика. Поэтому физики предпочитают характеризовать волну именно частотой колебаний частиц.

Рис 2 Смещение частицы среды как функция времени в гармонической волне Ещё - фото 2

Рис. 2. Смещение частицы среды как функция времени в гармонической волне

Ещё одна важная характеристика волны – её интенсивность. Она определяется амплитудой («размахом») колебаний частиц в волне и связана с громкостью воспринимаемого звука (позже поговорим об этом подробнее).

Наконец, очень важна форма колебаний. Мы имеем в виду форму графика, изображающего зависимость смещения частиц среды в фиксированном месте от времени. Такая же форма повторится на «мгновенной фотографии» распределения смещений частиц среды вдоль направления распространения волны (рис. 1). Наиболее простая форма колебаний – синусоидальная (рис. 2). Волны с такой формой колебаний называют гармоническими. Они имеют очень большое значение в акустике и вообще в физике. Вскоре мы узнаем почему.

Секреты музыкальных звуков

Внимание! Сейчас мы откроем тайну музыкальных и немузыкальных звуков. Итак: любые периодические колебания источника рождают музыкальный звук, а непериодические – немузыкальный.

Музыкальный звук мы можем пропеть, немузыкальный – не можем. У музыкальных звуков мы различаем высоту тона (то есть отождествляем звук с определённой нотой музыкального строя), у немузыкальных – нет. К примеру, пение птиц красиво, но записать его нотами и воспроизвести голосом или на музыкальном инструменте не получается (разве что «ку-ку» можно спеть вполне узнаваемо).

Ещё у музыкальных звуков есть тембр – «звуковой окрас», позволяющий отличить ноту «до», взятую на рояле, от такой же ноты, взятой на другом инструменте.

Где же в форме колебаний спрятаны все эти особенности музыкального звука? И как можно классифицировать многообразие всевозможных форм колебаний, чтобы можно было «подделывать» (синтезировать) нужные звуки или сделать программы их распознавания?

Рис 3 Пример разложения периодического колебания кривая 3 на гармоники - фото 3

Рис. 3. Пример разложения периодического колебания (кривая 3) на гармоники (кривые 1 и 2)

Оказывается, любое периодическое движение чисто математически может быть представлено как сумма гармонических колебаний с кратными частотами, то есть с частотами, полученными умножением некоторой основной частоты f 0на целые числа: 2, 3, 4… (это известная математикам теорема Фурье). Наименьшая частота этого ряда ( f 0) называется основной, а колебание с этой частотой – основным колебанием или первой гармоникой. Основная частота определяется периодом исходного движения. Колебания с кратными частотами 2 f 0, 3 f 0, 4 f 0… называют гармоническими обертонами или просто гармониками (второй, третьей, четвёртой и так далее до бесконечности). Многообразие сочетаний различных амплитуд (и фаз) гармоник обеспечивает все возможные формы результирующего колебания.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика в быту»

Представляем Вашему вниманию похожие книги на «Физика в быту» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика в быту»

Обсуждение, отзывы о книге «Физика в быту» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x