Юрий Почанин - Водородное топливо. Производство, хранение, использование

Здесь есть возможность читать онлайн «Юрий Почанин - Водородное топливо. Производство, хранение, использование» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2022, Жанр: Прочая научная литература, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Водородное топливо. Производство, хранение, использование: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Водородное топливо. Производство, хранение, использование»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге даны характеристики водорода и водородного топлива. Рассмотрены основные методы производства водорода, в том числе: паровая конверсия природного газа, обычная и плазменная газификация угля, термохимические циклы, основные способы электролиза, а также производство водорода с использованием ядерной энергетики и источников альтернативной энергетики. Описаны принципы работы различных топливных элементов. Дана характеристика промышленных способов очистки водорода. При хранении водорода дан анализ наземных и подземных хранилищ газа, баллонного хранения газообразного и жидкого водорода. Большое внимание уделено хранению водорода материалами, способными адсорбировать водород, и легкими композитными материалами, химически связывающие водород. Отдельная глава посвящена использованию водородного топлива на транспорте и энергетике. Рассмотрены вопросы безопасности водородных технологий.

Водородное топливо. Производство, хранение, использование — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Водородное топливо. Производство, хранение, использование», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Принципиальная схема получения метано-водородной смеси по технологии адиабатической конверсии метана (АКМ) изображена на рис.2.6.

Рис26 Принципиальная схема получения метановодородной смеси Природный газ - фото 21

Рис.2.6. Принципиальная схема получения метано-водородной смеси

Природный газ, очищенный от сернистых соединений, поступает в узел смешения с водяным паром. Водяной пар поступает из котла-утилизатора. Природный газ с водяными парами при температуре примерно 450°С поступают в огневой подогреватель. На выходной линии огневого подогревателя температура смеси составляет примерно 680°С. С такой температурой смесь поступает в адиабатический реактор. В реакторе, благодаря адиабатической конверсии метана, получаем метано-водородную смесь и водяные пары с температурой примерно 590°С. Так как в адиабатическом реакторе часть воды тратится для получения водорода, производится постоянная подпитка воды в систему. Перед тем как попасть в систему вода проходит через фильтр. Все расходные показатели по природному газу, метано-водородной смеси, водяному пару и воде показаны на схеме.

В данной установке при подаче на вход природного газа в количестве 1000 нм3/ч, а на выходе из установки получают метано-водородную смесь в количестве 1792 нм3/ч, а компонентный состав входного природного газа и выходной метано-водородной смеси показан в таблице 2.2.

Таблица 2.2. Компонентный состав входного природного газа и выходной метано-водородной смеси

Входящий продукт природный газ в основном состоит из метана 99 Выходящий - фото 22

Входящий продукт (природный газ) в основном состоит из метана (99%). Выходящий продукт является смесью трех компонентов: водяного пара – 67,7% (об.), водорода – 13,6% (об.) и метана – 15%. Повышенное содержание по сравнению с входящим продуктом имеют: диоксид углерода – 3,3% и оксид углерода – 0,233%. Однако при использовании МВС в качестве топливного газа выбросы СО2 и СО уменьшаются в полтора раза. Расчеты специалистов показали, что содержание водорода в МВС может изменяться от 0 до 44–48% как путем изменения температуры нагрева парогазовой смеси, так и путем разбавления товарной МВС природным газом.

Метано-водородное топливо может быть преобразовано в дальнейшем в синтез-газ для применения в процессах газохимии (GTL), либо из него может быть выделен водород как целевой продукт для различных отраслей с помощью методов PSA (короткоцикловой адсорбции) или мембранных крупнотоннажных технологий, освоенных в мировой практике.

2.2. Газификация угля

Газификация угля – процесс высокотемпературного взаимодействия угля с парами воды, кислородом, диоксидом углерода или их смесями, с целью получения горючих газов: Н2, СО, СH4. Они могут использоваться как топливо и как сырье для химической промышленности. Газифицироваться могут практически все виды газообразных, жидких и твердых топлив. Выбор сырья для процесса обычно бывает обусловлен экономическими соображениями, а иногда – направлением дальнейшей переработки образующейся газовой смеси.

Существуют различные типы процессов газификации углей. Наиболее эффективным и отработанным в промышленном масштабе, является процесс газификации угля под давлением, позволяющий получать как средне калорийный бытовой газ, так и газ для последующего синтеза. Существуют различные технологии газификации углей, отличающихся организацией процесса взаимодействия топлива и окислителя. Например, газификация с неподвижным или псевдоожиженным слоем или же со с путным потоком пылевидного топлива. Газификация проводится в специальных аппаратах – газогенераторах, которые также отличаются друг от друга в зависимости от типа процесса. При использовании воздушного дутья получается низкокалорийный газ (до 7 МДж/м3), в случае кислородного дутья – средне калорийный газ (до 17 МДж/м3). В то время как генераторы с воздушным дутьём работают при атмосферном давлении, генераторы с кислородным дутьём работают преимущественно при повышенных давлениях, что приводит к увеличению выхода метана.

Газификацией твердого топлива с парокислородным дутьем происходит под высоким давлением при температуре около 1500°С и последующим метанированием. На рис.2.7 схематически показаны реакционные зоны газификатора. В нижней части реактора непосредственно над колосниковой решеткой, через которую непрерывно поступает газифицирующий компонент (перегретый пар и кислород), находится зона горения (окислительная зона) с основными реакциями образования СО2. Над ней расположена первичная восстановительная зона (зона теплопоглощения) с основными реакциями раскалённого углерода и водяного пара, в которой генерируется Н2. Еще выше находится вторичная восстановительная зона (зона прогрева топлива) с основными реакциями образования СО, СО2 и Н2.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Водородное топливо. Производство, хранение, использование»

Представляем Вашему вниманию похожие книги на «Водородное топливо. Производство, хранение, использование» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Водородное топливо. Производство, хранение, использование»

Обсуждение, отзывы о книге «Водородное топливо. Производство, хранение, использование» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x