Однако «вселенская аксиоматизация» не состоялась. Вся суперамбициозная, грандиозная программа, над которой несколько десятилетий работали крупнейшие математики мира, была опровергнута одной-единственной теоремой. Её автором был Курт Гёдель, которому к тому времени едва исполнилось 25 лет.
В 1930 г. на конференции, организованной «Венским кружком» в Кёнигсберге, он сделал доклад «О полноте логического исчисления», а в начале следующего года опубликовал статью «О принципиально не разрешимых положениях в системе Principia Mathematica и родственных ей системах». Центральным пунктом его работы были формулировка и доказательство теоремы, которая сыграла фундаментальную роль во всем дальнейшем развитии математики, и не только её. Речь идет о знаменитой теореме Гёделя о неполноте. Наиболее распространенная, хотя и не вполне строгая её формулировка утверждает, что «для любой непротиворечивой системы аксиом существует утверждение, которое в рамках принятой аксиоматической системы не может быть ни доказано, ни опровергнуто». Тем самым Гёдель дал отрицательный ответ на первое утверждение, сформулированное Гильбертом.
Любопытно, что на этой же конференции с докладом на тему «Каузальное знание и квантовая механика» выступил Вернер Гейзенберг. В этом докладе были намечены первые подходы к его знаменитым «соотношениям неопределенности».
Выводы Гёделя произвели в математическом сообществе эффект интеллектуальной бомбы, тем более что вскоре на их основе были получены опровержения двух других пунктов программы Гильберта. Оказалось, что математика неполна, неразрешима, и её непротиворечивость нельзя доказать (в рамках той самой системы, непротиворечивость которой доказывается).
Теорема Гёделя.
С тех пор прошло три четверти века, но споры о том, что же все-таки доказал Гёдель, не утихают. Особенно жаркие прения идут в околонаучных кругах. «Теорема Гёделя о неполноте является поистине уникальной. На неё ссылаются всякий раз, когда хотят доказать „всё на свете“ — от наличия богов до отсутствия разума», — пишет выдающийся современный математик В.А. Успенский.
Если оставить в стороне многочисленные подобные спекуляции, то нужно отметить, что учёные разделились в вопросе оценки роли Гёделя на две группы. Одни вслед за Расселом считают, что знаменитая теорема, которая легла в основу современной математической логики, тем не менее, оказала весьма незначительное влияние на дальнейшую работу за пределами данной дисциплины — математики как доказывали свои теоремы в «догёделевскую» эпоху, так и продолжают доказывать их и по сей день.
Что же касается фантасмагорического видения компьютеров, непрерывно доказывающих всё новые теоремы, то смысл подобной деятельности у многих специалистов вызывает большое сомнение. Ведь для математики важна не только формулировка доказанной теоремы, но и её понимание, поскольку именно оно позволяет выявить связь между различными объектами и понять, в каком направлении можно двигаться дальше. Без такого понимания теоремы, генерируемые на основе правил формализованного вывода, представляют собой лишь своего рода «математический спам», — таково мнение сотрудника кафедры математической логики и теории алгоритмов мехмата МГУ Александра Шеня.
Похожим образом рассуждал и сам Гёдель. Тем, кто упрекал его в разрушении целостности фундамента математики, он отвечал, что по сути ничего не изменилось, основы остались по-прежнему незыблемыми, а его теорема привела лишь к переоценке роли интуиции и личной инициативы в той области науки, которой управляют железные законы логики, оставляющие, казалось бы, мало места для подобных достоинств.
Однако некоторые ученые придерживаются другого мнения. Действительно, если считать умение логически рассуждать основной характеристикой человеческого разума или, по крайней мере, главным его инструментом, то теорема Гёделя прямо указывает на ограниченность возможностей нашего мозга. Согласитесь, что человеку, воспитанному на вере в бесконечное могущество мысли, очень трудно принять тезис о пределах её власти. Скорее уж речь может идти об ограниченности наших представлений о собственных ментальных возможностях. Многие специалисты полагают, что формально-вычислительные, «аристотелевские» процессы, лежащие в основе логического мышления, составляют лишь часть человеческого сознания. Другая же его область, принципиально «невычислительная», отвечает за такие направления, как интуиция, творческие озарения и понимание. И если первая половина разума подпадает под гёделевские ограничения, то вторая от подобных рамок свободна.
Читать дальше