Различные микроскопы открывают нам глаза на богатство происходящего внутри маленьких тел. Микроскопия — обширная наука со множеством оригинальных и интересных идей. Но здесь я остановлюсь лишь на четырех методах, позволяющих выявить разные уровни внутренней структуры материи.
В самых простых и наиболее привычных микроскопах используется способность стекла и некоторых других прозрачных материалов преломлять свет. Подбирая стеклянные линзы и располагая их нужным образом, можно расширить угол, под которым световые лучи, идущие от рассматриваемого предмета к наблюдателю, достигают сетчатки или светочувствительной пластинки камеры. В результате предмет кажется больше. Эта уловка дает мощный и универсальный метод исследования мира до расстояний порядка одной миллионной метра или даже меньше. Так можно увидеть клетки, из которых состоят живые организмы; можно взглянуть на скопления бактерий, которые как помогают им, так и приносят вред.
Пытаясь с помощью светопреломляющих устройств рассмотреть объекты еще меньшего размера, мы сталкиваемся с фундаментальными проблемами. Подобные приборы основываются на регулировании направления световых лучей. Но поскольку свет распространяется в виде волн, то само понятие прямолинейных лучей очень приблизительно. Использовать волны, чтобы рассмотреть детали, размер которых меньше длины волны самих волн, — все равно что собирать бисер в боксерских перчатках. Длины волн видимого света — порядка половины одной миллионной метра, так что подобные микроскопы при меньших расстояниях бесполезны.
Длины волн рентгеновского излучения в сотни или тысячи раз меньше, так что, в принципе, рентгеновские лучи позволяют добраться до гораздо меньших расстояний. Но для них нет ничего, что было бы эквивалентно стеклу для видимого света, — нет материала, из которого можно сделать линзы для управления лучами. А без линз классические методы увеличения изображений бесполезны.
К счастью, есть другой подход, которым можно воспользоваться, — рентгеновская дифракция, или рентгеноструктурный анализ. Здесь линзы не нужны. Пучок рентгеновских лучей направляется на интересующий нас объект. Сам объект преломляет и рассеивает их, а мы регистрируем выходящий пучок. Чтобы избежать недоразумений, скажу, что это совсем не то, что привычные рентгеновские снимки, используемые врачами, — там мы видим более грубые проекции рентгенографических теней на плоскость. При рентгеновской дифракции используются гораздо лучше контролируемые пучки и направляются они на гораздо меньшие объекты. «Картина», фиксируемая рентгеновской дифракционной камерой, выглядит совсем не как образец — обширная информация о его внутреннем строении представлена в закодированном виде.
С характеристикой «обширная» связана длинная и увлекательная сага, главы которой отмечены Нобелевскими премиями. К сожалению, информации, предоставляемой дифрактограммами, недостаточно, чтобы реконструировать объекты, — математических расчетов для этого мало. Они похожи на искаженные файлы цифровых изображений.
Чтобы справиться с задачей, несколько поколений ученых создавали интерпретационную лестницу , позволяющую переходить от простых объектов к более сложным. Первыми объектами, структуру которых расшифровали по дифрактограммам, были простые кристаллы (наподобие поваренной соли). В примере с солью химические свойства вещества позволяют предположить, как должен выглядеть ответ. Это должна быть упорядоченная решетка из равного числа атомов натрия и хлора. Кроме того, исходя из опытов с большими кристаллами, можно было ожидать, что решетка окажется кубической. Однако расстояния между атомами известны не были. К счастью, можно рассчитать, как будет выглядеть дифрактограмма модельного кристалла, независимо от этого расстояния. Сопоставляя эти результаты с экспериментом, можно не только подтвердить модель, но и определить межатомное расстояние в кристалле.
Когда ученые подошли к изучению более сложных структур, они вновь начали применять бутстрап-метод. На каждом этапе ранее подтвержденные модели использовались для построения более сложных, а те рассматривались как кандидаты для описания материалов с еще более сложными структурами. Затем экспериментальные дифрактограммы сравнивались с рассчитанными для структур-кандидатов. Так интуиция и тяжелый труд иногда позволяли добиться успеха. И с каждым новым достижением становились известны структурные характеристики, важные для построения нового поколения моделей.
Читать дальше
Конец ознакомительного отрывка
Купить книгу