В 1963 году одновременно и независимо теоретики — американский (М. Гелл-Манн) и австрийский (Г. Цвейг в отличие от Гелл-Манна, введшего слово «кварк», он называл их «тузами») высказали гипотезу о существовании кварков — трех фундаментальных частиц, различными комбинациями которых и являются все адроны.
Кварки должны были обладать необычными свойствами, и прежде всего дробными зарядами (до этих пор считалось, что наименьшие заряды у электрона и позитрона — минус и плюс единица). А кварки имели заряды: один +2/3, два других -1/3 (так, к примеру, протон есть совокупность двух кварков с зарядом плюс 2/з и одного с зарядом минус 1/3, что и дает в сумме нужную единицу).
Кварки вначале были встречены в штыки. Однако теория кварков предсказывала существование нового адрона (омега-минус-гиперона), который вскоре и был обнаружен. Успех был полным. В 1969 году Гелл-Манн стал нобелевским лауреатом.
Физики бросились искать кварки. Искали в океанах, где вроде бы за тысячелетия должны были они накопиться, искали в метеоритах, космических лучах. Тщетно. В 1967 году под Серпуховом в нашей стране был пущен крупнейший тогда в мире ускоритель. Возможности поисков кварков значительно возросли. Но обнаружить следы кварков опять не удалось.
Раздались голоса, что кварки всего лишь удобная абстракция, что, возможно, в 2000 году на вопрос, что такое кварк, физик лишь недоуменно пожмет плечами: теория кварков к тому времени будет забыта.
Родилось, окрепло и другое предположение — кварки принципиально нельзя обнаружить. Нуклоны и гипероны (вместе они называются барионами) построены из трех кварков, мезоны — из двух (кварка и антикварка). Так вот, скажем, мезоны чем-то похожи на магнит, говорили сторонники ненаблюдаемости кварков. А любая попытка отделить северный магнитный полюс от южного обречена на провал. Разрежьте магнит на две части: каждая станет самостоятельным магнитом со своими полюсами. Так и любая попытка разъединить компоненты мезона ведет к образованию новых кварка и антикварка: вместо одного мезона мы получим пару — и только!
Есть и третья версия. Возможно, энергий, достигаемых на современных ускорителях, просто недостаточно для рождения свободных кварков.
Никогда не говори «никогда»
О кварках можно рассказывать бесконечно. Есть кварки красные, желтые, голубые .. Но выбор цветов .и само понятие цвета — вещи довольно условные. Просто оказалось, что кварки разнятся на «нечто», что за неимением у физиков готовых этикеток и в погоне за яркостью образа нарекли «цветом».
Чистая условность. При желании это «нечто» можно было бы пометить не цветом, а, например, вкусом, и говорить о сладких, соленых и горьких кварках. Но у нас к кваркам сейчас другой интерес: хотелось бы указать на возможную связь кварков с энергетикой будущего.
Дело вот в чем: каждый протон, как полагают, состоит из трех кварков. Но каждый кварк по массе (фантастика!) раз в десять тяжелее протона.
Странности странного микромира: тут слон может залезть в кастрюлю! Часть может быть по массе больше целого. «Толстые» кварки запросто умещаются в «чреве» «худенького» протона.
Итак, вновь дефект масс: если три свободных кварка объединятся в протоне, выделится громадная энергия. Она в тысячи раз больше того, что обещает энергетика термоядерная.
Подобной энергии было бы достаточно для снаряжения межзвездных экспедиций. Вероятно, именно с подобными процессами сталкиваются астрономы при наблюдении взрывающихся галактик и других грандиозных явлений в космосе.
Элементарные подсчеты показывают, что, когда три кварка сливаются в протоне, 95 процентов их массы «исчезает» — превращается в энергию. И «утилизация» одного грамма кварков позволила бы высвободить громадное количество энергии, эквивалентное сжиганию 2500 тонн нефти.
Замечательные перспективы для энергетики, но нам возражают: кварки существуют только внутри адронов, в свободном состоянии они быть не могут. Это их фундаментальное свойство. Их уникальность как раз в том, что человек впервые открыл микрообъекты, наблюдать которые в чистом, изолированном, что ли, виде принципиально нельзя!
Так-то это, может быть, и так, однако никогда не говори «никогда». Эту заповедь следовало бы уже внушать школьникам. «Синтез каучука неосуществим» — говорили. «Никогда человечество не побывает на Луне» — тоже было. «Использование атомной энергии невозможно»...
История науки помнит разные запреты. Никогда, никогда, никогда... А наука развивалась, и запреты падали один за другим.
Читать дальше