Олег Власов - Футболоматика - как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния

Здесь есть возможность читать онлайн «Олег Власов - Футболоматика - как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Литагент 5 редакция, Жанр: Прочая научная литература, Спорт, Домоводство, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Доступным языком автор рассказывает, как математика определяет результаты в футболе. Как «тики-така» стала одной из самых эффективных тактик в истории? Каким образом букмекеры рассчитывают коэффициенты? А как можно их перехитрить?
«Футболоматика» объясняет, как лучшие клубы мира конвертируют статистические данные в выигранные матчи. Вы убедитесь, что точные науки – один из краеугольных камней современного футбола.

Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Треугольники в железной дороге

«Барселона», возможно, построила лучшие треугольники в футболе, но треугольники решали проблемы и задолго до того, как появился футбол.

«Барселона», возможно, построила лучшие треугольники в футболе, но треугольники решали проблемы и задолго до того, как появился футбол. Рассмотрим следующую проблему. Вы – мэр города, в который входят несколько пригородов. Вы хотите построить железную дорогу, которая соединит их. Но вам не хватает денег, поэтому вы хотите использовать наименьшее количество рельсовых путей. Как вы соедините все пригороды с минимальной длиной железнодорожных путей?

Рисунок 2.2 показывает три правдоподобных решения для четырех пригородов. Посмотрите на них и подумайте, какой из них использует наименьшее количество ресурсов.

Если мы применим знания тригонометрии из средней школы, мы сможем выяснить, какой вариант наиболее короткий.

Решение слева состоит из трех блоков: каждая сторона по длине равна блоку и для соединения нам необходимы три стороны.

Рисунок 22 Три возможных решения для соединения четырех пригородов круги с - фото 8

Рисунок 2.2. Три возможных решения для соединения четырех пригородов (круги) с наименьшей возможной длиной железной дороги (сплошные линии).

Решение посередине добавляет соединение в центр, разделяя область на четыре одинаковых треугольника. Длина каждой из двух пересекающихся линий может быть рассчитана с использованием теоремы Пифагора и равна √2. Общая длина равна √2 + √2 = 2,82 блока. Это решение похоже на расположение Хидегкути между полузащитой и форвардами или на то, как «Барселона» использует Месси. Добавление дополнительных точек дает треугольники, которые уменьшают общую длину соединительных линий.

Если одна дополнительная точка соединения – это хорошо, то использование двух еще лучше. На рисунке 2.2 длина правой структуры составляет 1 + √3 = 2,73 блока [13] Длина каждой из четырех ветвей, соединенных с пригородами, равна Применяя теорему Пифагора, средняя длина тогда . Общая сумма равна . – это наименьшее из всех решений. И снова задействованы треугольники. Три ответвления выходят из точек соединения под углом 120°. Как это часто бывает в математике, самая красивая и наиболее сбалансированная форма является лучшим решением.

Решение проблемы эффективного соединения четырех точек на квадрате было непростым (не могу сказать точно, сколько мэров справилось с этим). Но это задача для начинающих. Если хотите бросить себе настоящий вызов, попробуйте найти решение для пяти точек на углах пятиугольника. Ответом снова будут треугольники. Вопрос лишь в том, как их упорядочить. Если справитесь с пятью, попробуйте шесть точек в шестиугольнике. В последнем случае результатом станет совершенно новый тип решения, но он все еще включает в себя треугольники. Смотрите рисунок ниже.

Ответ Решение для пяти и шести точек Давайте сделаем проблему соединения - фото 9

Ответ. Решение для пяти и шести точек.

Давайте сделаем проблему соединения пригородов действительно сложной. Попробуем решить эту проблему, если мы не знаем расположения пригородов или даже сколько их необходимо подключить. С такой проблемой постоянно сталкивается слизевик под названием Physarum polycephalum. Слизевики не имеют мозга и состоят всего из одной клетки. Их «тело» представляет собой сеть взаимосвязанных трубок, которые качают питательные вещества назад и вперед. Слизевиков можно обнаружить на лесной подстилке или деревьях. Обычно они покрывают площадь меньше монеты, однако они могут сжиматься в неблагоприятных условиях и разрастаться, если еды вдоволь.

Когда слизевики ищут еду, они решают проблему соединения пригородов. Вдохновленный этой идеей, мой японский коллега Тоси Накагаки решил проверить, смогут ли слизевики создать сеть метрополитена и скоростного трамвая Токио. Он и его коллеги разложили питание слизевиков в виде масштабной модели Большого Токио. Они положили овсяные хлопья в чашки Петри: одна большая посередине как отображение центра города и поменьше в местах, соответствующих Сибуе, Иокогаме, аэропорту в Тибе и другим близлежащим районам. Чтобы добиться соединения чашек с овсом, слизевики должны решить ту же проблему, которую разрешили японские градостроители при проектировании транспортной системы Токио. Могут ли слизевики формировать эффективные связи между своими продовольственными ресурсами?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния»

Представляем Вашему вниманию похожие книги на «Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния»

Обсуждение, отзывы о книге «Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x