Алексей Благирев - Big data простым языком [litres]

Здесь есть возможность читать онлайн «Алексей Благирев - Big data простым языком [litres]» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент АСТ, Жанр: Прочая научная литература, Базы данных, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Big data простым языком [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Big data простым языком [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Наш телефон знает о нас больше, чем мы думаем. Он умеет собирать и анализировать информацию о том, как мы передвигаемся по городу, какие посты лайкаем и какими приложениями пользуемся. Он сообщит о пробках и поторопит на работу, чтобы мы не опоздали; подберет музыку под наше настроение и составит список персональных рекомендаций, чем можно занять себя в течение дня. Телефон – больше не устройство, по которому звонят, это уже средство управления окружающим нас миром. Незаметно мы окружили себя такими интерфейсами, которые создают невидимый барьер между человеком и окружающей средой. Планирование, управление, коммуникация, все теперь строится через эти программы и девайсы. Даже человеческие отношения.
Но насколько глубока кроличья нора? Каждому предстоит разобраться в этом самому. Эта книга поможет донести основные принципы проектирования и создания таких интерфейсов управления бизнесом, обществом и окружающим нас миром посредством Больших данных. Читайте, наслаждайтесь и помните: сожжение книг противозаконно.

Big data простым языком [litres] — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Big data простым языком [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Так вот, я утверждаю, что вы как руководитель будете регулярно озабочены необходимостью постоянно задавать весьма конкретные и повторяющиеся вопросы о том, как обстоят дела с уровнем клиентского сервиса (успевает ли организация обслуживать своих клиентов вовремя и так далее).

Ответы на них будут лучше, чем просто отчетность, которая отвечает не на конкретный вопрос, а на открытый.

Все подобные вопросы можно выписать, структурировать и передать алгоритмам, чтобы они уже отвечали.

Шаг #3. Деперсонифицировать принимаемые решения – Depersonalise Decisions making

Переход к фокусировке на тех данных, которые действительно нужны организации, ведет к созданию новой формы культуры, где данным выделяют центральное место, а все решения – деперсонализированны, потому что важно не мнение людей в комнате, а данные на которых оно строится.

Нет смысла бороться с HYPPO, все решения должны быть деперсонифицированны, потому что они говорят не про мнения отдельно взятых людей, а про реальные тренды, бенчмаркинг, результаты работы клиентов или уровень их удовлетворенности. Будь-то электронная коммерция или реальное производство, данные покажут, что идет не в соответствии с ожиданиями, и это никак не связано с персональной оценкой.

А если HYPPO по стечению обстоятельств стал читатель этой книги, то для него важно помнить, что роль HYPPO – диверсифицировать мнение людей, допуская споры и несогласия. Своим присутствие HYPPO должен стимулировать принятие решений на основании данных.

Шаг #4. Проактивный инсайт (прогноз) важнее реактивной аналитики – Proactive insights rather than reactive

В тот момент, когда вы получили данные и начали заниматься подготовкой инсайта, данные уже устарели. Поэтому вместо того, чтобы выполнять и готовить отчетность, людям нужно выполнить анализ, про который никто не спрашивал ранее. Такой анализ необходим ввиду того, что данные быстро устаревают, и ряд ключевых аспектов может быть не покрыт во время процесса принятия решения.

Шаг #5. Расширить полномочия Аналитиков – Empower your Analyst

Итак, для того чтобы Аналитик мог потратить свое рабочее время на анализ, о котором его никто не просил, у него должны быть достаточные полномочия, иначе, вместо подготовки регулярной отчетности, аналитик будет заниматься неструктурированным или слабоструктурированным анализом. Как ни странно, но data-driven организация вряд ли будет существовать в условиях регулярного процесса выпуска отчетности, на который тратится более восьмидесяти процентов времени работы команды. В одном из американских банков, где я однажды был на обмене опытом, была ситуация, когда люди выполняли регулярный процесс подготовки ежемесячной отчетности всего за 3 дня. Я спросил топ-менеджеров, а что люди делают остальное время, так как команда была достаточно большой. Они ответили – «Value Added активности», и все посмеялись. Признаюсь честно, до меня дошло не сразу. Под «делают Value Added активности» здесь подразумевалось, что аналитики использовали свое время, чтобы улучшить иные процессы организации по работе с данными и их продуктом – ежемесячной отчетностью.

Шаг #6. Треугольник ценности – Solve the Trinity

Внутри треугольника находятся метрики и инсайты, которые приводят к действию. На вершинах треугольника обозначены ключевые направления создания ценности с использованием данных:

• Поведение (Behaviour) – Необходимо думать широко при анализе поведения своих пользователей или клиентов. Это не просто данные, а поведение реальных людей.

• Результаты (Outcomes) – Научитесь связывать поведение клиентов с ключевыми показателями или критическими факторами успеха организации.

• Опыт (Experience) – Инсайты должны приходит через эксперименты, исследования, тестирование своих клиентов или поиск закономерности в их поведении. Этим необходимо постоянно заниматься.

Шаг #7. Создайте вокруг процесс – Got Process?

Data-driven организация – это не пункт назначения, а процесс или путь по которому идет организация, поэтому необходимо поддерживать его соответствующими артефактами и адекватными процессами. Этот процесс позволяет пользователям и сотрудникам применять тот или иной фреймворк работы с данными. Он не должен быть сложным и запутанным, а, скорее, должен отражать, кто и на каком конкретном шаге участвует в создании ценности с использованием данных.

Завершает Авинаш Кошик свой уникальный фреймворк одним из ключевых тезисов, без которого невозможно движение к data-driven организации, а именно: ответственным за данные, аналитику и поиск инсайтов в организации должно быть обособленное бизнес-подразделение (не IT).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Big data простым языком [litres]»

Представляем Вашему вниманию похожие книги на «Big data простым языком [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Big data простым языком [litres]»

Обсуждение, отзывы о книге «Big data простым языком [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x