И теория относительности, и квантовая механика так хорошо согласуются с реальностью, каждая в своей области, что очень трудно придумать что-нибудь лучше. Но мало кто из физиков задумывается о еще более радикальной возможности, а именно, что квантовая механика и общая теория относительности не могут быть объединены, и реальность не имеет единого, согласованного и логического обоснования.
Теория всего и теория струн
Всеобъемлющая физическая теория, которая объединит квантовую механику и общую теорию относительности, сможет описать все на свете, начиная от Большого взрыва и заканчивая элементарными частицами. Так есть ли у нас сейчас ведущий кандидат на роль этой теории всего?
В конце XIX столетия атомы считались самыми маленькими «строительными кирпичиками» материи. Затем была открыта их структура: ядро, состоящее из протонов и нейтронов, и электроны, снующие вокруг ядра. В 1960-е годы атом был разделен еще дальше. Так, сначала теоретически, а затем и экспериментально было определено, что протоны и нейтроны состоят из еще более маленьких частиц, названных кварками. Означают ли эти структурные слои, что деление бесконечно? Все теоретические и экспериментальные свидетельства, собранные до сих пор, говорят, что это не так и что кварки лежат на самом дне мироздания. Сейчас мы полагаем, что кварки – это фундаментальные строительные блоки материи, также как и семейство частиц, называемых лептонами, к которым относится электрон (рис. 8.2).
Рис. 8.2. Стандартная модель: наши современные представления о строительных кирпичиках, из которых состоит материя, и о силах, связывающих их между собой
Кварки и лептоны, входящие в состав вещества, довольно сильно отличаются от бозонов, являющихся переносчиками взаимодействий в природе. Поэтому для всех оказалось большим сюрпризом открытие, сделанное теоретиками в 1970-е годы. Было показано, что можно вывести уравнения, которые не будут изменяться, если одни частицы заменить другими. Это предполагает существование в природе нового типа симметрии. Точно так же, как в силу своей симметрии внешний вид снежинки не изменяется, как бы мы ее не переворачивали, неизменный вид уравнений сводится к новой симметрии, называемой суперсимметрией. Одно из следствий этого заключается в том, что каждая частица в стандартной модели будет иметь своего суперсимметричного партнера. Но никто еще не нашел ни одного такого суперпартнера.
Суперсимметрия и супергравитация
Физики-теоретики, однако, по-прежнему увлечены суперсимметрией (см. также главу 6), поскольку она предсказывает гравитацию. Согласно математическим уравнениям теории суперсимметрии акт превращения частицы в ее суперсимметричную партнершу и наоборот идентичен ее движению сквозь пространство-время. Это означает, что суперсимметрия связывает свойства квантовых частиц и пространства-времени, делая возможным подключить сюда также и гравитацию. В результате получается теория, которая называется супергравитацией. Математические выкладки теории супергравитации привели к неожиданному следствию: пространство-время способно обладать только одиннадцатью измерениями и не более того.
Идея о дополнительных измерениях Вселенной возвращает нас к ранним попыткам объединения разных сил природы. В 1920-е годы немецкий физик и математик Теодор Калуца (1885–1954) добавил в теорию Эйнштейна пятое измерение для пространства-времени, в результате чего у гравитационного поля появились новые компоненты, похожие на компоненты электромагнитного поля. Но почему же мы не видим пятое измерение? В 1926 году шведский физик Оскар Клейн (1899–1974) предположил, что пятое измерение не похоже на другие четыре: оно свернуто в калачик, который слишком мал, и поэтому мы его не видим. Вообразите муравья на туго натянутой проволоке: с одинаковым успехом он в любой момент может передвигаться как вдоль по проволоке, так и по ее окружности. Но если мы смотрим на проволоку с расстояния, намного превышающего размеры муравья, проволока будет выглядеть фактически как одномерная линия. Вычисления Клейна показали, что дополнительное измерение должно иметь не более 10 –35 м в поперечнике, а это слишком мало, чтобы быть замеченным даже на самых мощных современных ускорителях частиц.
Идея Калуцы и Клейна пребывала в спячке долгие годы, пока супергравитация не вернула ее к жизни, обогатив пространство-время семью новыми измерениями, находящимися в свернутом состоянии. Могут ли эти дополнительные измерения описать сильные, слабые и электромагнитные взаимодействия? На первый взгляд, теория супергравитации выглядела весьма многообещающе, но и в ней нашлись изъяны. Во-первых, с помощью 11-мерной супергравитации трудно понять, как кварки и электроны соотносятся со слабым ядерным взаимодействием. Еще более серьезной оказалась проблема, разрушающая все попытки примирить гравитацию и квантовую теорию поля: когда мы используем уравнения супергравитации для вычисления некоторых процессов, результат обращается в бесконечность.
Читать дальше