В качестве первого примера этой идеи давайте построим из нашей неразумной материи очень простую (но от этого не менее важную) систему, вычисляющую функцию NAND [12] NAND представляет собой сокращение от двух английских слов NOT (не) и AND (и). Гейт AND выдает на выходе 1 только в том случае, если на входе две единицы. NAND делает в точности противоположное.
и потому получившую название гейт NAND [13] В отечественной специальной литературе принято использовать для обозначения этих понятий термин “логический вентиль”, однако в последнее время транслитерация английского эквивалента “gate” стала выходить на первое место, в особенности в научно-популярной литературе. – Прим. перев.
. У нее на входе два бита, а на выходе один: это 0, если оба бита на входе 1, во всех остальных случая – это 1. Если в одну сеть с батареей и электромагнитом мы вставим два замыкающих сеть ключа, то электромагнит сработает тогда, и только тогда, когда оба ключа замкнуты (находятся в состоянии “on”). Давайте поместим под ним еще один ключ, как показано на рис. 2.6, так что магнит, срабатывая, всякий раз будет размыкать его. Если мы интерпретируем первые два ключа как два бита на входе, а третий – как бит на выходе, то мы и получим то, что назвали гейтом NAND: третий ключ будет разомкнут только тогда, когда первые два замкнуты. Есть очень много более практичных способов сделать гейт NAND – например, с помощью транзисторов, как показано на рис. 2.6. В нынешних компьютерах гейты NAND чаще всего встроены в микросхемы или иные компоненты, выращенные из кристаллов кремния.
Рис. 2.6
Логический вентиль (гейт) NAND по заданным на входе двум битам А и В вычисляет третий бит С в соответствии с правилом: C = 0, если A = B = 1, и C = 0 в любом другом случае, – и посылает его на выход. В качестве гейта NAND можно использовать много различных физических устройств. В электрической цепи на средней части рисунка ключи А и В соответствуют битам на входе со значениями 0 при размыкании и 1 при замыкании. Когда они оба замкнуты, идущий через электромагнит ток размыкает ключ С. На схеме в правой части рисунка битам соответствуют значения потенциалов – 0, когда потенциал равен нулю, и 1, когда потенциал равен 5 вольтам. При подаче напряжения на базы обоих транзисторов (А и В) потенциал в точке С падает практически до нуля.
В информатике есть замечательная теорема, которая утверждает, что гейт NAND универсален : то есть вычисление любой вполне определенной функции [14] Я называю “вполне определенной функцией” то же, что математики и информатики называют “вычислимой функцией”, – то есть функцию, которая может быть вычислена каким-то гипотетическим компьютером, при условии что ему предоставлены неограниченные память и время. Алан Тьюринг и Алонсо Чёрч доказали, что существуют функции, которые могут быть описаны, но не могут быть вычислены.
может быть осуществлено гейтами NAND, соединенными друг с другом. Так что если у вас есть достаточное количество гейтов NAND, вы можете собрать из них устройство, вычисляющее все что угодно ! На случай, если у вас возникло желание посмотреть, как это работает, у меня есть схема (рис. 2.7), на которой вы увидите, как умножаются числа при помощи одних только гейтов NAND.
Исследователи из MIT Норман Марголус и Томмазо Тоффоли придумали слово “ computronium ” (компьютрониум), обозначающее любую субстанцию, которая может выполнять любые вычисления. Мы только что убедились, что создать компьютрониум не так уж и сложно: эта субстанция всего лишь должна быть способна соединять гейты NAND друг с другом любым желаемым способом. Разумеется, существуют и мириады других компьютрониумов. Например, еще один легко создать из предыдущего, заменив все гейты NAND на NOR: у него на выходе будет 1 только тогда, когда на оба входа подается 0. В следующем разделе мы обсудим нейронные сети, которые также способны выполнять произвольные вычисления, то есть и они ведут себя как компьютрониум. Ученый и предприниматель Стивен Вольфрам показал, что то же может быть сказано о простых устройствах, получивших название клеточных автоматов, которые периодически подправляют каждый бит в зависимости от того, в каком состоянии находятся биты по соседству. А еще в 1936 году Алан Тьюринг доказал в своей ставшей ключевой статье, что простая вычислительная машина (известная сейчас как “универсальный компьютер Тьюринга”), способная оперировать некоторыми символами на бумажной ленте по некоторым правилам, также способна выполнять любые вычисления. Одним словом, материя не просто обладает способностью к любым вполне определенным вычислениям, но и может производить их самыми разнообразными способами.
Читать дальше
Конец ознакомительного отрывка
Купить книгу