В XIX веке оказалось, что электричество и магнетизм – две стороны одной медали. Появилась теория электромагнитного поля. В начале XX столетия целью стало объединение электромагнетизма с гравитацией. Казалось, Теодор Калуца и Оскар Клейн нащупали перспективный подход [11] В 1921 г. немецкий математик Теодор Калуца представил модель, объединяющую гравитацию и электромагнетизм в пятимерном пространстве Минковского. В рамках этого подхода из уравнений общей теории относительности удалось получить классические уравнения Максвелла.
. Альберт Эйнштейн тоже посвятил последние годы своей жизни поискам возможностей для такого объединения, однако из этого, к сожалению, ничего не вышло. Зато обнаруженное позже слабое ядерное взаимодействие [12] Первые серьезные теоретические модели в этой области появились в 1930-е гг., когда Энрико Ферми начал работать над описанием бета-распада.
удалось успешно объединить с электромагнитным в так называемое электрослабое взаимодействие. Это было сделано Стивеном Вайнбергом, Шелдоном Ли Глэшоу и Абдусом Саламом более полувека назад. А уже в 1980-е гг., когда в ЦЕРН были открыты и изучены W- и Z-бозоны, стало ясно, что получены надежные экспериментальные подтверждения верности предложенной ими модели.
Нет больших сомнений, что в будущем удастся добавить в единое описание и сильное ядерное взаимодействие, а также проверить это экспериментально или с помощью наблюдений. Такая теория получила наименование «Великое объединение» (Grand Unification Theory – GUT). Активные работы в этом направлении ведутся с 1970-х гг. Продолжаются и попытки объединения всех четырех фундаментальных взаимодействий в общую модель. Это уже «Теория всего» (Theory of Everything – TOE). Теория струн, которая сейчас у всех на слуху, как раз является одним из подходов к созданию ТОЕ.
В настоящее время считается, что объединение взаимодействий происходит при высоких энергиях взаимодействующих частиц (например, это могло иметь место в новорожденной вселенной). Получить прямые экспериментальные данные в этой области практически невозможно. А потому единые теории – вотчина теоретиков, и основные надежды пока связаны как раз с тем, что на основе известных законов, базирующихся на надежных экспериментальных данных, используя новые гипотезы и всю мощь математического аппарата (нередко для таких целей придумывают новые математические конструкции), можно построить внутренне непротиворечивую теорию, которая, с одной стороны, будет давать верное описание для уже известных явлений, а с другой – предсказывать новые эффекты.
Таким образом, возможность вывода новых формул из уже существующих демонстрирует единство структуры описания, взаимосвязь между разными понятиями и явлениями, процессами и законами. В то же время манипулирование с формулами, которое следует математическим правилам, может приводить к новым открытиям, и это важная сторона «удивительной» эффективности математики в физике. В истории тому есть множество свидетельств.
Классическим примером эффективности (и подтверждением правильности) ньютоновской механики считается открытие Нептуна. Напомним, что на основе наблюдавшихся отклонений в движении Урана Джону Адамсу и Урбену Леверье удалось рассчитать положение новой большой планеты Солнечной системы, и в сентябре 1846 г. это небесное тело было обнаружено астрономами берлинской обсерватории.
В случае открытия Нептуна речь идет не о том, что с помощью математических преобразований получены новые законы природы, а о том, что была триумфально продемонстрирована предсказательная сила теории (в данном случае – ньютоновской механики и теории гравитации), которая к этому времени успела обзавестись мощным математическим аппаратом. Частично новые математические методы развивались именно для решения задач небесной механики. Это один из первых ярких примеров взаимного обогащения физики и математики: математики разрабатывают методы – физики их применяют, у физиков возникают запросы на решение интересных актуальных задач – математики разрабатывают новые методы. Неудивительно, что спустя несколько десятилетий анализ небесно-механических задач привел к новым поразительным результатам сразу и в физике, и математике.
В конце XX века, рассматривая некоторые варианты задачи трех тел, Анри Пуанкаре получил неожиданные решения. Орбиты вели себя нерегулярным образом. Предсказать точное положение тела оказывалось невозможным даже при ничтожной неопределенности в начальных условиях. Это были первые хаотические решения в динамических системах [13] Детальнее об орбитальном хаосе можно прочесть в 8-й главе книги Иэна Стюарта «Величайшие математические задачи» (М.: Альпина нон-фикшн, 2019).
.
Читать дальше
Конец ознакомительного отрывка
Купить книгу