Николай Чурсин - Популярная информатика

Здесь есть возможность читать онлайн «Николай Чурсин - Популярная информатика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Киев, Год выпуска: 1980, Издательство: Техника, Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная информатика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная информатика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

"Информатика возникла сравнительно недавно (примерно тридцать лет назад) и по сравнению с другими науками еще совсем молода. Но несмотря на это, в настоящее время она выдвинулась в ряд важнейших областей знания. Причина ее стремительного развития состоит в том, что предмет ее исследования — научная информация, свойства и закономерности ее распространения — приобретает в современном мире исключительно важное значение." - текстовая версия.

Популярная информатика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная информатика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь самое время задать вопрос: а что такое информация? Что мы знаем о ней? Можно ли сформулировать определение информации? В настоящее время человечество, столкнувшись с первыми проявлениями информационного взрыва, занялось изучением сущности понятия информации и ее свойств. Однако на сегодняшний день мы не можем сказать, что знаем все или почти все об информации Долгое время — тысячелетиями — люди накапливали информацию, вооружались знаниями, не задумываясь, как это происходит. Теперь дальнейшее овладение знаниями невозможно без пристального изучения этого процесса. Оказалось, что нам нужны не просто знания и не просто информация. Нам необходимы знания о знании и информация об информации. В результате появилось множество научных дисциплин, изучающих различные аспекты понятия информации, все, что так или иначе связано с этим понятием. И первые результаты этого развернутого «наступления на информацию» дают возможность предполагать, что информационный кризис будет преодолен.

Что же такое информация?

Немного теории…

Слово «информация» происходит от латинского — разъяснение, изложение, осведомленность. В течение многих веков понятие информации не раз претерпевало изменения, то расширяя, то предельно сужая свои границы. Сначала под этим словом понимали «представление», «понятие», затем — «сведения», «передачу сообщений». В XX в. бурное развитие получили всевозможные средства связи (телефон, телеграф, радио), назначение которых заключалось в передаче сообщений. Однако эксплуатация их выдвинула ряд проблем: как обеспечить надежность связи при наличии помех, какой способ кодирования сообщения применять в том или ином случае, как закодировать сообщение, чтобы при минимальной его длине обеспечить передачу смысла с определенной степенью надежности. Эти проблемы требовали разработки теории передачи сообщений, иными словами, теории информации. Одним из основных вопросов этой теории был вопрос о возможности измерения количества информации.

Попытки количественного измерения информации предпринимались неоднократно. Первые отчетливые предложения об общих способах измерения количества информации были сделаны Р. Фишером (1921 г.) в процессе решения вопросов математической статистики. Проблемами хранения информации, передачи ее по каналам связи и задачами определения количества информации занимались Р. Хартли (1928 г.) и X. Найквист (1924 г.). Р. Хартли заложил основы теории информации, определив меру количества информации для некоторых задач. Наиболее убедительно эти вопросы были разработаны и обобщены американским инженером Клодом Шенноном в 1948 г. С этого времени началось интенсивное развитие теории информации вообще и углубленное исследование вопроса об измерении ее количества в частности.

Для того чтобы применить математические средства для изучения информации, потребовалось отвлечься от смысла, содержания информации. Этот подход был общим для упомянутых нами исследователей, так как чистая математика оперирует с количественными соотношениями, не вдаваясь в физическую природу тех объектов, за которыми стоят соотношения. Например, если находится сумма двух чисел 5 и 10, то она в равной мере будет справедлива для любых объектов, определяемых этими числами. Поэтому, если смысл выхолощен из сообщений, то отправной точкой для информационной оценки события остается только множество отличных друг от друга событий и соответственно сообщений о них.

Предположим, нас интересует следующая информация о состоянии некоторых объектов: в каком из четырех возможных состояний (твердое, жидкое, газообразное, плазма) находится некоторое вещество? на каком из четырех курсов техникума учится студент?

Во всех этих случаях имеет место неопределенность интересующего нас события, характеризующаяся наличием выбора одной из четырех возможностей. Если в ответах на приведенные вопросы отвлечься от их смысла, то оба ответа будут нести одинаковое количество информации, так как каждый из них выделяет одно из четырех возможных состояний объекта и, следовательно, снимает одну и ту же неопределенность сообщения.

Неопределенность неотъемлема от понятия вероятности. Уменьшение неопределенности всегда связано с выбором (отбором) одного или нескольких элементов (альтернатив) из некоторой их совокупности. Такая взаимная обратимость понятий вероятности и неопределенности послужила основой для использования понятия вероятности при измерении степени неопределенности в теории информации. Если предположить, что любой из четырех ответов на вопросы равновероятен, то его вероятность во всех вопросах равна 1/4. Одинаковая вероятность ответов в этом примере обусловливает и равную неопределенность, снимаемую ответом в каждом из двух вопросов, и, следовательно, каждый ответ несет одинаковую информацию.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная информатика»

Представляем Вашему вниманию похожие книги на «Популярная информатика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная информатика»

Обсуждение, отзывы о книге «Популярная информатика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x