Николай Чурсин - Популярная информатика

Здесь есть возможность читать онлайн «Николай Чурсин - Популярная информатика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Киев, Год выпуска: 1980, Издательство: Техника, Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная информатика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная информатика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

"Информатика возникла сравнительно недавно (примерно тридцать лет назад) и по сравнению с другими науками еще совсем молода. Но несмотря на это, в настоящее время она выдвинулась в ряд важнейших областей знания. Причина ее стремительного развития состоит в том, что предмет ее исследования — научная информация, свойства и закономерности ее распространения — приобретает в современном мире исключительно важное значение." - текстовая версия.

Популярная информатика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная информатика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

или

P 3: P 2= P 2: P 1= a .

Эту зависимость называют законом Брэдфорда.

Б. Викери уточнил модель С. Брэдфорда. Он выяснил, что журналы, проранжированные (выстроенные) в порядке уменьшения в них статей по конкретному вопросу, можно разбить не на три зоны, а на любое нужное число зон. Если периодические издания расположить в порядке уменьшения в них количества статей по конкретному вопросу, то в полученном списке можно выделить ряд зон, каждая из которых содержит одинаковое количество статей. Примем следующие обозначения х — количество статей в каждой зоне. Т x — количество журналов, содержащих х статей, Т 2 x — количество журналов, содержащих 2 х статей, т. е. сумма наименований журналов в 1-й и во 2-й зонах, Т 3 x — количество журналов, содержащих 3 х статей, т. е. сумма наименований журналов в 1-й, 2-й и в 3-й зонах, Т 4 x — количество журналов, содержащих 4 х статей.

Тогда эта закономерность будет иметь вид

T x: T 2 x : T 3 x : T 4 x :… = 1: a: a 2: a 3:…

Данное выражение называют законом Брэдфорда в толковании Б. Викери.

Если закон Ципфа характеризует многие явления социального и биологического характера, то закон Брэдфорда — это специфический случай распределения Ципфа для системы периодических изданий по науке и технике.

Из этих закономерностей можно извлечь выводы огромной практической пользы.

Так, если расположить какие-либо периодические издания в порядке убывания количества статей по определенному профилю, то, согласно Брэдфорду, их можно разбить на три группы, содержащие равное количество статей. Пусть мы отобрали группу из 8 наименований журналов, занимающих первые 8 мест в полученном списке. Тогда для того, чтобы удвоить количество статей по интересующему нас профилю, нам придется добавить к имеющимся 8 еще 8 · a наименований журналов. Если a = 5 (это значение найдено экспериментальным путем для некоторых тематических областей), то число этих наименований равно 40. Тогда общее число наименований периодических изданий составит 48, что, конечно, значительно больше, чем 8. При попытке же получить втрое большее количество статей нам придется охватить уже 8 + 5 · 8 + 5 2 · 8 = 256 наименований! Из них треть интересующих нас статей сосредоточена всего в 8 журналах, т. е. статьи распределяются по наименованиям журналов неравномерно. С одной стороны наблюдается концентрация значительного количества статей по определенной тематике в нескольких профильных журналах, с другой — рассеяние этих статей в огромном количестве изданий по смежной или далекой от рассматриваемой тематике, в то время как на практике необходимо выявить основные источники по интересующей нас области научно-технических знаний, а не случайные издания.

Закономерности концентрации и рассеяния научно-технической информации в царстве документов позволяют выбирать именно те издания, которые с наибольшей вероятностью содержат публикации, соответствующие определенному профилю знаний. В массовом процессе информационного обеспечения в масштабах страны использование этих закономерностей позволяет сократить для народного хозяйства огромные расходы.

Существующее рассеяние публикаций нельзя оценивать только как вредное явление. В условиях рассеяния улучшаются возможности для межотраслевого обмена информацией.

Попытка сконцентрировать все публикации одного профиля в нескольких журналах, т. е. не допустить их рассеяния, будет иметь отрицательные последствия, не говоря уж о том, что точное отнесение документа к тому или иному профилю не всегда представляется возможным.

Результаты проверок закона рассеяния Брэдфорда, как показал С. Брукс, имеют различные степени соответствия. Несмотря на внесенные поправки, модель Брэдфорда не отражает разнообразия реальных распределений. Это несоответствие можно объяснить тем, что Брэдфорд сделал свои выводы, основываясь на выборе массивов, относящихся только к узким тематическим областям.

Огромная заслуга Дж. Ципфа и С. Брэдфорда состоит в том, что они положили начало строгому исследованию документальных информационных потоков (ДИП), которые представляют собой совокупности научных документов-публикаций и неопубликованных материалов (например, отчетов по научно-исследовательским и опытно-конструкторским работам). Дальнейшие исследования, среди которых видное место занимают работы советского специалиста в области информатики В.И. Горьковой, показали, что можно определять не только количественные параметры совокупностей научных документов, но и совокупностей элементов признаков научных документов: авторов, терминов, индексов классификационных систем, наименований изданий, т. е. наименований элементов, характеризующих содержание научных документов. Например, можно расположить журналы в порядке убывания числа печатающихся в них авторов, в порядке убывания средней величины публикующихся в них статей или упорядочить совокупность документов по любому ее элементу.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная информатика»

Представляем Вашему вниманию похожие книги на «Популярная информатика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная информатика»

Обсуждение, отзывы о книге «Популярная информатика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x