Сет Cтивенс-Давидовиц - Все лгут. Поисковики, Big Data и Интернет знают о вас всё

Здесь есть возможность читать онлайн «Сет Cтивенс-Давидовиц - Все лгут. Поисковики, Big Data и Интернет знают о вас всё» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Литагент 5 редакция «БОМБОРА», Жанр: Прочая научная литература, Интернет, Базы данных, , на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Все лгут. Поисковики, Big Data и Интернет знают о вас всё: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Все лгут. Поисковики, Big Data и Интернет знают о вас всё»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Люди склонны преувеличивать и не договаривать, опросы не показывают всей картины, исследования недостаточно репрезентативны ‒ в общем, лгут все… Кроме Big Data! Перед вами сенсационная книга о том, как при помощи больших данных и современных технологий можно узнать всю подноготную современного общества. Автор этой книги, специалист Google по Data Science, выяснил, что скрывают люди, какие они на самом деле, а не какими хотят казаться. Что же он узнал?

Все лгут. Поисковики, Big Data и Интернет знают о вас всё — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Все лгут. Поисковики, Big Data и Интернет знают о вас всё», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мои интересы становятся очевидными не только на основании тех аккаунтов, на которые я подписываюсь, но и тех, которые я не выбираю. Я интересуюсь спортом, политикой, комедиями и наукой, а не едой, модой или театром. Мои подписки показывают, что мне нравится Берни Сандерс, но не Элизабет Уоррен [162] Бернард Сандерс и Элизабет Уоррен – американские политики, принадлежат к демократической партии. – Прим. ред. , Сара Сильверман, но не Эми Шумер [163] Сара Сильверман и Эми Шумер – американские актрисы, выступающие в жанре стенд-ап. – Прим. ред. , « New Yorker» но не « Atlantic» [164] Два старейших литературных журнала в США. – Прим. ред. , мои друзья – Ной, Эмили Сэндс и Джош Готтлиб, но не Сэм Ашер. (Извини, Сэм, но твои посты в Twitter – это скукота.)

Из 200 миллионов аккаунтов в Twitter, у кого профиль похож на мой? Оказалось, мой двойник – пишущий для Vox [165] www.vox.com, американский новостной сайт. – Прим. ред. Дилан Мэтьюз. Это стало большим разочарованием с точки зрения улучшения использования социальных сетей, ведь я уже и так подписан на аккаунт Дилана в Twitter и Facebook и постоянно читаю его статьи в Vox . Поэтому знание о том, что именно он является моим двойником, ничего в моей жизни не изменило. Но это довольно круто – узнать о существовании человека, больше всех в мире похожего на вас. Особенно, если это кто-то, кем вы восхищаетесь. И когда я закончу эту книгу и перестану жить отшельником, может быть, мы с Мэтьюзом сможем общаться и обсуждать сочинения Джеймса Суровецки.

Поиск двойника Ортиса был важен для многих поклонников бейсбола, а поиск моего двойника был интересен только мне. Что еще могут показать такие исследования? Прежде всего, с помощью подобных данных многие крупнейшие интернет-компании стараются улучшить свои услуги и работу с пользователями. Amazon использует что-то вроде поиска двойников для вычисления книг, которые вы хотели бы купить. Там видят, что именно выбирают люди с вашими параметрами, и основывают на этом свои рекомендации.

Pandora делает то же самое, определяя, какие песни вы хотите слушать. Примерно так же Netflix узнает, какие фильмы вы хотели бы посмотреть. Результат получился просто ошеломляющим. Когда инженер Amazon Грег Линден в первый раз использовал поиск двойников для предсказания предпочтений читателей, и рекомендации оказались настолько точными, основатель Amazon Джефф Безос пал перед Линденом на колени с воплем: «Я тебя не достоин!»

Но самое интересное в поиске двойников не то, что он сейчас используется почти повсеместно, а то, что он часто не используется. Есть несколько крупных областей, работа которых может быть значительно улучшена путем персонализации. Возьмите, например, наше здоровье.

Исаак Коган, ученый и исследователь из Гарварда, пытается воплотить этот принцип в медицине. Он хочет собрать и организовать всю нашу медицинскую информацию так, чтобы вместо использования одинакового подхода ко всем, врачи подыскивали бы похожих на вас пациентов. Затем они могли бы использовать более персонализированную диагностику и более целенаправленное лечение.

Коган считает это естественным развитием медицины, и даже не особо радикальным. «Что такое диагноз? – спрашивает он. – Диагноз, по сути, является утверждением, что вы оказались в той же ситуации, как и множество ранее изученных людей. Если я, не дай бог, диагностирую у вас инфаркт, то скажу, что у вас та же патофизиология, которую я уже видел у других людей с сердечным приступом».

Диагноз, по сути, является примитивным вариантом поиска двойника. Проблема в том, что наборы данных, которые используют врачи для его постановки, слишком маленькие. Сегодня диагноз основывается на опыте доктора, лечившего своих пациентов, и он может быть дополнен данными из научных статей о популяциях, с которыми работали другие исследователи. Как мы видели, поиск двойника может стать действительно полезной штукой – необходимо только, чтобы он включал в себя намного большую статистику.

Вот область, в которой большие данные на самом деле могут помочь. Так почему же на внедрение метода требуется столько времени? Почему он до сих пор широко не используется? Проблема заключается в сборе информации. Большинство медицинских заключений по-прежнему существуют только на бумаге и похоронены в папках. А те, которые оцифрованы, часто не могут быть использованы вследствие несовместимых форматов. «Мы нередко имеем больше информации о бейсболе, чем о здоровье», – говорит Коган [166] Я брал интервью у Исаака Когана по телефону 15 июня 2015 года. . Но простые меры порой идут длинными путями. Ученый неоднократно говорил о «низко висящих плодах». Например, он считает, что даже просто создание базы данных, включающей информацию о росте и весе детей, а также обо всех возможных детских болезнях, стало бы революционным развитием педиатрии. После этого развитие каждого ребенка можно было бы сравнить с развитием любого другого ребенка. Компьютер помог бы найти детей, развитие которых идет по уже пройденному кем-то пути и автоматически предупредил бы обо всех тревожных моментах. Например, он был бы в состоянии обнаружить преждевременный рост ребенка, что в некоторых случаях может указывать на две возможные причины: гипотиреоз или опухоль мозга. Ранняя диагностика в обоих случаях принесет огромную пользу. «Подобные заболевания возникают достаточно редко – примерно одно на десять тысяч, – говорит Коган. – В остальном эти дети здоровы. Думаю, мы могли бы диагностировать болезнь раньше по крайней мере на год. Стопроцентно смогли бы».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Все лгут. Поисковики, Big Data и Интернет знают о вас всё»

Представляем Вашему вниманию похожие книги на «Все лгут. Поисковики, Big Data и Интернет знают о вас всё» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Все лгут. Поисковики, Big Data и Интернет знают о вас всё»

Обсуждение, отзывы о книге «Все лгут. Поисковики, Big Data и Интернет знают о вас всё» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x