Приложение Google Trends – источник большей части данных, содержащихся в моей работе. Однако, поскольку оно позволяет лишь сравнивать относительную частоту разных запросов, но не сообщает точное их число по какому-либо конкретному виду поиска, я обычно дополнял его результаты данными, полученными из Google Adwords – сервиса, который показывает, как часто осуществлялся каждый поиск. В большинстве случаев мне также удалось улучшить четкость изображения с помощью моего собственного алгоритма, написанного на базе Google Trends, который я описал в своей диссертации «Опыт использования данных Google», и в моей статье для Journal of Public Economics – «Уровень расовой неприязни к чернокожему кандидату: на основе данных, полученных с помощью Google». Диссертация, статья, полное объяснение данных и код, использовавшийся во всех оригинальных исследованиях, представленных в этой книге, доступны на моем сайте: sethsd.com. – Прим. авт.
Сокр. от Knickerbockers – нью-йоркская баскетбольная команда (НБА). - Прим. ред.
Подробную информацию обо всех этих расчетах можно найти на моем сайте sethsd.com в формате CSV под заголовком «секс-данные». Данные общего социального обследования могут быть найдены по адресу http://gss.norc.org/.
Данные, предоставленные автором.
Ku Klux Klan ( англ. ) – Ку-клукс-клан. – Прим. ред.
Авторский анализ с помощью Google Trends. Я тоже собрал данные на всех членов Stormfront, как описано в Seth Stephens-Davidowitz, «The Data of Hate» («Данные о ненависти»), New York Times , 13 июля 2014 года, sr4. Соответствующие данные могут быть обнаружены в sethsd.com в разделе под заголовком «Stormfront».
Анализ автором трендов с помощью данных Google. Штаты, для которых это справедливо – Кентукки, Луизиана, Аризона и Северная Каролина.
Этот документ был опубликован как Seth Stephens-Davidowitz, «The Cost of Racial Animus on a Black Candidate: Evidence Using Google Search Data» («Уровень расовой враждебности для чернокожего кандидата: опыт использования данных поисковых запросов в Google»), Journal of Public Economics 118 (2014). Более подробную информацию об исследовании можно найти здесь. Кроме того, данные можно найти на моем сайте, sethsd.com в разделе под заголовком «расизм».
«Самая сильная корелляция с поддержкой Трампа в поисковых запросах Google – слово „черномазый“. Другие также сообщали об этом» (28 февраля 2016 года, твит). Смотрите также Nate Cohn, «Donald Trump’s Strongest Supporters: A New Kind of Democrat» («Убежденные сторонники Дональда Трампа: новый тип демократа»), NewYorkTimes, December 31, 2015, A3.
В ориг. – Big Data – Прим. ред.
«Bringing Big Data to the Enterprise» («Привлечение Больших Данных к работе на предприятии»), ИБМ, https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html.
Это обсуждается Seth Stephens-Davidowitz, «What Do Pregnant Women Want?» («Чего хочет беременная женщина?»), New York Times , 17 мая 2014года, SR6.
Stephens-Davidowitz, «What Do Pregnant Women Want?» («Чего хочет беременная женщина?»)
Я брал интервью у Джерри Фридмана по телефону 27 октября 2015 года.
Я говорю о той части их анализа, которую хорошо знаю – о части, пытающейся объяснить и предсказать поведение человека. Я не говорю об искусственном интеллекте, который пытается, скажем, водить машину.
John Paparrizos, Ryan W. White, and Eric Horvitz, «Screening for Pancreatic Adenocarcinoma Using Signals from Web Search Logs: Feasibility Study and Results» («Скрининг поджелудочной железы аденокарцинома, используя сигналы из журналов веб-поиск: технико-экономическое обоснование и результаты»), Journal of Oncology Practice (2016).
Это способ определить, насколько точно созданная модель соответствует данным. – Прим. ред.
Это исследование обсуждается в Seth Stephens-Davidowitz, «Dr. Google Will See You Now» («Доктор Google теперь видит вас»), New York Times , 11 августа 2013, SR12.
Если начистоту: вскоре после завершения этого исследования я переехал из Калифорнии в Нью-Йорк. Использовать факты для понимания того, что следует сделать – легко. Сделать это на самом деле – довольно сложно. – Прим. авт.
Lars Backstrom and Jon Kleinberg. «Romantic Partnerships and the Dispersion of Social Ties: A Network Analysis of Relationship Status on Facebook» («Романтические отношения и дисперсия социальных связей: сетевой анализ статуса отношений на Facebook»), in Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing (2014).
Д. Канеман, «Думай медленно… Решай быстро», АСТ, 2017.
Читать дальше
Конец ознакомительного отрывка
Купить книгу