Почему? Как может небольшая группа людей, собранных в одном месте, состязаться с идеями и обучающимися ИИ-платформами, которые мы описали в предыдущих главах? Если вы автоматизировали, окружили ореолами и расширили деятельность вашей компании, связанную с этими процессами, двигатели, наделенные ИИ, могут быть применены для инноваций. Ваши процессы исследований и разработок и специальные группы могут быть колоссально расширены применением новой машины, в первую очередь потому, что это радикально повышает масштаб и скорость инновационного процесса.
Инновации со скоростью и масштабом искусственного интеллекта
Продолжая расти, Netflix пытается создать главным образом что-то совершено новое – первую в мире глобальную телевизионную станцию. Однако возникает много серьезных трудностей с производством контента, который привлечет большое количество международных пользователей. В конце концов, местной телевизионной станции довольно трудно угадать предпочтения зрителей конкретной агломерации: программные менеджеры таких станций живут в этом обществе, их рука постоянно на пульсе местной культуры, демографии, предпочтений и волнующих моментов. Как может команда Netflix, базирующаяся в Северной Калифорнии, понимать нюансы зрительских предпочтений в таких местах, как Бавария, Австралийские Северные территории или японский остров Окинава? С помощью новой машины это довольно легко.
Менеджеры Netflix привлекают свои алгоритмы для информирования о том, что работает (и не работает) с конкретной демографической группой в любой точке мира. По сути, они почти постоянно пребывают в удивлении от того, что их личные допущения в большинстве случаев оказываются ошибочными. Например, до момента запуска в Европе команда Netflix полагала, что главная определяющая того, что люди захотят посмотреть, – это возраст. Неправильно.
Тодд Йеллин (Todd Yellin), глава инновационных продуктов в Netflix, сказал: «Мы думали, что у 19-летнего парня и 70-летней женщины настолько разные вкусы, что персонализировать будет легко. Но правда в том, что 19-летние парни любят смотреть документальные фильмы о свадебных платьях. Всего лишь раз нажать play на сервисе Netflix – и это будет гораздо более мощный сигнал, чем ваш пол или возраст» 6. А еще – география значит далеко не так много, как сначала ожидала команда Netflix. Здравый смысл подсказывал, что некоторые регионы мира должны иметь очень специфические вкусы. Снова неправильно. Например, многие японские фильмы аниме смотрят за пределами Японии. Йеллин заключает: «Теперь у нас единый мировой алгоритм, суперполезный для нас, поскольку максимально отображает все вкусы всех потребителей со всего мира».
Если бы Netflix следовал традиционному подходу к исследованиям и разработкам, чтобы понять предпочтения мирового клиента (например, разговаривал с главами студий, нанимал дорогостоящих консультантов, действовал на основании информированного мнения своих самых опытных сотрудников), то, вероятно, сделал бы несколько очень дорогих ошибок. После нескольких серьезных непопаданий руководители Netflix могли прийти к выводу: «Наша модель здесь просто не работает». Вместо этого, постоянно привлекая инсайты, создаваемые новой машиной, компания теперь имеет детализированную дорожную карту своего широкомасштабного расширения.
Инновации, подгоняемые интеллектуальными системами, еще и быстры. Это сверхбыстрое машинное обучение заключено в сердце закона изобретателя и футуриста Рея Курцвейла (Ray Kurzweil) – «Закона ускоряющейся отдачи». Коротко говоря, Курцвейл настаивает, что люди учатся с линейной скоростью, в то время как машина сегодня учится экспоненциальным шагом. В связи с этим, когда новая машина вскоре распространится широко, скорость человеческого прогресса в XXI веке (что определено по кумулятивному росту человеческих знаний и скоростью инноваций) будет как минимум в тысячу раз быстрее, чем средняя скорость ХХ века 7.
И что же, это тысячекратное ускорение в улучшениях действительно приведет к результатам? Вероятно, нет: существует множество факторов углеродных форм, замедляющих инновации (например, мнения людей, идеи и эмоции, а также разнообразные внутренние проблемы организаций, о которых мы говорили ранее). Так что давайте будем консервативны и занизим предсказание Курцвейла не слегка, а намного. Но даже если мы снизим скорость машинных инноваций на два порядка, все равно это будет означать, ваш процесс НИОКР будет двигаться с десятикратной скоростью по сравнению с сегодняшней. Это уровень масштаба и скорости, который традиционные исследования и разработки обеспечить не смогли бы никогда.
Читать дальше
Конец ознакомительного отрывка
Купить книгу