Это бизнес-книга для технологичной эпохи. Мы не планируем вдаваться в мельчайшие подробности конкретных технологий, включенных в сегодняшний искусственный интеллект. Мы могли бы написать еще одну полноценную книгу о машинном обучении, глубоком обучении и нейронных сетях (эти темы – в топе популярности в ведущих мировых университетах), но, честно говоря, это было бы излишним, поскольку сегодня на рынке уже представлено огромное количество обучающих ресурсов.
Данные от вещей и учетных систем
Исходных параметров в новых машинах много, и они весьма разнообразны. Некоторые являются зрелыми системами на базе ERP, в другие будет в реальном времени поступать информация от оснащенных оборудованием предметов – тот самый Ореол кодов с данными об окружающих продуктах, людях и местах, – то есть постоянно информировать свой нервный центр о том, что происходит вокруг. Со временем эти параметры будут изменяться, иногда быстро и радикально. Эти вводные параметры отвечают за создание контекстуализированных, ценных данных. Без новых источников данных строить или подпитывать ваши современные машины будет сложно. За выработку новой информации – кода – будут ответственны сенсоры в вашем мобильном телефоне, одежде, спортивном оборудовании, машинах, дорогах и буквально любых других физических объектах. Связь этих сенсоров с интеллектуальными системами – это и есть зарождающийся «Интернет вещей».
Данные могут казаться невесомой абстракцией (если вам интересно, все электроны Интернета весят, вероятно, как две клубники 7). Но хотя данные весят так мало, они обладают огромной ценностью, когда применяются в правильном месте и в правильное время. Обширное число данных должно быть собрано, сохранено, защищено, проанализировано и сделано доступными. Именно поэтому нам требуются большие системы баз данных, которые будут стабильными, эластичными и проверенными (какими бы крутыми ни казались новые блестящие приборы). Приобретает популярность новое поколение баз данных (например, Hadoop), однако никуда не делись имеющие клиентскую базу в целом более чем в семьсот сорок тысяч компаний Oracle и SAP. А с ними и другие заслуженные «торговцы оружием» в лице IBM, Microsoft и иных главных предприятий-поставщиков ПО. В цифровой экономике нам по-прежнему будут так же нужны высококачественные учетные системы (как традиционные, так и появляющиеся вновь), как нужны электросети с переменным током.
Как и любая производственная машина, новая машина нуждается в энергии и «трубопроводе». Инфраструктура включает все сетевые соединения, серверы, источники электроэнергии и все прочее, что заставляет машину загудеть. В нынешних системах все элементы управляются, как правило, или непосредственно из IT-департамента, или внешним поставщиком услуг, или – что все более распространено сегодня – облачным провайдером. Обязательно наличие мобильных сетей, как правило, являющихся основным носителем данных. Чтобы обладать должной вычислительной мощностью, все интеллектуальные системы, работают они на серверах Amazon, где-то в Googleplex или в вашем собственном центре обработки данных, нуждаются в высокоэффективном, всегда включенном трубопроводе.
Интеллектуальные системы в действии
«Анатомия» новых машин может показаться чем-то абстрактным, хотя эти части соединены между собой в настоящую новую машину, видимую в реальном мире. Уже многое было сказано о Netflix, но мы хотим сказать о другом. Все мы знакомы с этой платформой потокового мультимедиа, являющейся отличной иллюстрацией того, как компания, применяющая новую машину, новые сырьевые материалы и ориентированные на них бизнес-модели, переворачивает бизнес каждый день и в штатном режиме.
Машина, ставшая Netflix (благодаря ИИ)
В 2016 году Netflix занимал примерно 35% всего интернет-трафика в Северной Америке и имел весьма оживленные ТВ-сети 8. Если попытаться разобрать Netflix на косточки, мы увидим анатомию новой машины в действии (см. табл. 4.2).
Таблица 4.2. Анатомия интеллектуальной системы Netflix
Что такое «хорошо»? Атрибуты успешной интеллектуальной системы
Читать дальше
Конец ознакомительного отрывка
Купить книгу