В нашей частной жизни мы думаем о Netflix, Strava, Linkedin и другом как о приложениях. Большинство из нас уже даже не зовет их «программным обеспечением». То, до чего вы дотрагиваетесь, контент, которым делитесь, получаемые информация или идеи, – все это проходит через приложение (или через слой приложения), являющееся входом в оставшуюся часть новой машины. Годами вы загружали приложения в свой компьютер, смартфон или планшет, а сегодня их внедряют и в промышленные машины (такие как автомобили). Важнейшим является то, что ваше впечатление будет сформировано приложением. Остальная часть интеллектуальной системы, если она хоть сколько-то хороша, для нас невидима.
Кроме того, как мы подчеркивали в нашей книге « Code Halos », приложение должно обеспечивать пользователя чувством прекрасного. Приложение должно проходить по критериям FANG в части элегантности и простоты использования. Это объясняет стремительный подъем «дизайн-мышления» в корпоративных IT-кругах, ведь эти интерфейсы должны подходить вашим клиентам, партнерам и сотрудникам для использования в повседневных делах (никакие учебники или тренинги для пользователей не разрешаются!). Ключ к успеху в том, что интерфейс приложения должен быть простым и интуитивным, вписываться в контекст пользовательских потребностей.
Несмотря на всю шумиху, узкий искусственный интеллект – это современное, сложное, адаптивное программное обеспечение в сердце интеллектуальной системы. То, что мы считаем ИИ, по-настоящему должно включать три элемента.
1. Логика цифрового процесса. Каждый раз, входя в интеллектуальную систему, мы участвуем в каком-то процессе: бронируем машину, обращаемся за страховой выплатой, заключаем финансовую сделку или проверяем статус МРТ-аппарата. В этом нет ничего исключительно нового. IT-специалист из 1990-го распознал бы технические элементы, управляющие протекающими внутри интеллектуальной системы процессами. Революционная составляющая интеллектуальных систем в том, что они преобразуют многие ручные процессы в автоматизированные. Вспомните еще раз пример с противопоставлением Uber и такси. Процесс заказа автомобиля в обычном такси выполняется вручную (например, клиент звонит, посредник информирует диспетчера, диспетчер связывается по радио с подходящим водителем и т. д.). В Uber весь процесс автоматизирован. Когда этот оцифрованный процесс вылился в миллионы транзакций, революция в отрасли состоялась. Мы опишем, как это сделать , во второй половине книги. Однако сейчас главная проблема в том, что, хотя руководящая процессным слоем искусственного интеллекта технология довольно проста, правильно структурировать этот лежащий в основе процесс – крайне трудная работа.
2. Машинный интеллект. Вот это действительно новая и другая технология современной машины. С помощью комбинации алгоритмов, процесса автоматизации, машинного обучения и нейронных сетей система подражает «обучению» через получение опыта, то есть через расширение набора данных. Именно так она может автоматизировать рабочий процесс (например, чтение рентгеновского обследования), инструктировать работников по поводу лучшего следующего шага (например, продавец будет знать точную цену, которая с наибольшей вероятностью приблизит сделку) и распознавать рыночные тренды, что поможет создать следующий прорывной продукт. Внутренний «счетчик» (программный механизм внутри интеллектуальной системы) и есть машинный разум, настоящее сердце ИИ. Если смотреть с этой точки зрения, то все не так страшно, загадочно или безнадежно сложно. Не поймите нас неправильно: мы не умаляем техническую сложность этой созидательной работы. Но также в ней нет ничего мистического. Все эти разговоры про «духа в машине» 6в реальном мире едва ли имеют отношение к узкому ИИ. Это ничуть не больше и, конечно, ничуть не меньше, поскольку находится в корпусе новой машины, сердца искусственного интеллекта.
3. Программная экосистема. Наш, как видится, магический опыт взаимодействия с интеллектуальными системами кажется бесшовным, единым, однако мы никогда не взаимодействуем с только одним участком ПО. Обычно эти системы составляют экосистему из десятков разнообразных инструментов, связанных интерфейсом прикладного программирования (API), являющимся частями программного обеспечения, соединяющими один инструмент с другим, как детали Lego. Uber, например, привлекает богатый набор инструментов, в том числе Twilio для облачной коммуникации, Google для карт, Braintree для оплаты, SendGrid для отправки e-mail, и так далее. Благодаря программному интерфейсу Uber у каждого из нас есть собственный первоклассный опыт общения с этой системой, но на самом деле мы взаимодействуем с целой экосистемой инструментов и сервисов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу