Адам Кучарски
Идеальная ставка
Удача – это случайность, которую вы принимаете на свой счет.
Чип Денман
Adam Kucharski
THE PERFECT BET
Copyright © Adam Kucharski, 2016
© Издание на русском языке, перевод на русский язык, оформление. Издательство «Синдбад», 2019.
В 2009 году в британские газеты попала история Эллиота Шота – бывшего финансового трейдера, выигравшего на скачках более 20 миллионов фунтов. У Шота был «мерседес» с личным шофером, офис в Найтбридже – одном из фешенебельных лондонских районов, его знали как завсегдатая лучших городских клубов. Шот, говорилось в статье, использовал простую стратегию: всегда ставил против фаворита. Поскольку лошадь с наибольшими шансами на победу приходит первой далеко не всегда, такой метод способен принести большие деньги. Благодаря своей системе Шоту удалось дважды сорвать немалый куш – полтора миллиона фунтов во время скачек на Челтнемском фестивале и три миллиона на Королевских скачках в Аскоте.
В этой истории была лишь одна маленькая загвоздка – все от начала и до конца оказалось враньем. Ни в Аскоте, ни в Челтнеме Шот ничего не выиграл. Убедив инвесторов вложить в его систему ставок десятки тысяч фунтов, бо́льшую часть денег он потратил на клубы и развлечения. В конце концов у инвесторов возникли вопросы, и Шота арестовали. В 2013 году он был признан виновным в мошенничестве по девяти статьям и приговорен к пяти годам лишения свободы.
Может показаться удивительным, как Шоту удалось обдурить столько народу, но легенда об идеальной ставке и вправду ужасно привлекательна. Истории о баснословных выигрышах как будто опровергают расхожее мнение, согласно которому «казино всегда выигрывает». Они как бы намекают: в системе азартных игр всегда есть лазейки, надо лишь суметь их найти. Можно склонить слепой случай на свою сторону и обуздать фортуну при помощи формулы. Этот миф настолько соблазнителен, что человечество с момента зарождения азартных игр пытается обмануть систему. Однако поиск идеальной ставки занимает умы не одних картежников и любителей рулетки. Азартные игры постепенно заставили все человечество переосмыслить само понятие удачи.
Как только в парижских казино XVIII века появились первые рулетки, игроки принялись разрабатывать системы ставок. Большинство из них отличались завлекательными названиями и крайне низким коэффициентом результативности. Одна из таких систем именовалась мартингейл. Основывалась она на тактике, апробированной в игорных барах, и, по слухам, была абсолютно безопасной. Слава мартингейла быстро росла, и он стал пользоваться у игроков невероятной популярностью.
Ставить надо было на красное или черное, однако цвет, в сущности, значения не имел – все дело было в размере ставки. Ее следовало не повторять, а удваивать после каждого проигрыша. Когда в конце концов игроку выпадал нужный цвет, он мог вернуть все, что проиграл ранее, а заодно получить прибыль в размере первоначальной ставки. На первый взгляд система казалась безупречной, однако имела большой недостаток: иногда ставки приходилось повышать так, что они становились неподъемными не только для игрока, но и для казино. Следуя системе мартингейла, вы могли получить небольшую прибыль на начальном этапе, но в долгосрочной перспективе возникала проблема платежеспособности, мешавшая осуществлению стратегии. Несмотря на популярность мартингейла, выгодным предприятием его применение назвать было нельзя – слишком велики были затраты. «Мартингейл неуловим, как сама душа», – утверждал Александр Дюма.
Причина, по которой эта стратегия привлекала (и продолжает привлекать) игроков – ее математическая безупречность. Сравните сумму, которую вы поставите, и сумму, которую сможете получить, – вот вам и выигрыш! В этих расчетах есть лишь один изъян: они не выдерживают столкновения с реальностью. На бумаге мартингейл работает хорошо, но на практике от него пользы нет.
Чтобы добиться успеха в азартных играх, чрезвычайно важно владеть теорией. Но как быть, если теорию еще не разработали? Живший в эпоху Ренессанса математик Джероламо Кардано был заядлым игроком и, промотав наследство, решил заработать на своем увлечении. Но для этого ему необходимо было научиться высчитывать вероятность случайных событий.
Читать дальше