В отличие от кубического закона масштабирования общепринятое определение ИМТ не имеет никакого теоретического или концептуального обоснования, и статистическое значение этого показателя сомнительно. Кубический закон, напротив, теоретически обоснован и подтверждается опытными данными – при условии контроля характеристик рассматриваемого контингента. Поэтому неудивительно, что было предложено альтернативное определение ИМТ, согласно которому ИМТ вычисляется как отношение массы тела к кубу роста. Этот показатель известен под названием индекса Рорера . Хотя он несколько более значим с точки зрения корреляции с содержанием жира в организме, чем индекс Кетле, он тем не менее обладает теми же недостатками, так как не был преобразован для отдельных групп людей, имеющих сходные характеристики.
Разумеется, хорошие врачи используют для оценки здоровья несколько разных значений ИМТ, что уменьшает вероятность грубых ошибок интерпретации, кроме, вероятно, случаев, касающихся людей, ИМТ которых близок к граничным значениям. Во всяком случае, ясно, что классический ИМТ, используемый в настоящее время, не следует воспринимать слишком серьезно без дальнейших исследований и определения более точных и конкретных показателей, учитывающих, например, возраст и культурные различия, особенно для пациентов, здоровье которых, по-видимому, может находиться в опасности.
Этими примерами я хотел проиллюстрировать тот факт, что концепция масштабирования лежит в основе применения жизненно важных параметров, используемых в здравоохранении, и выявить некоторые из возможных ловушек и ошибочных толкований. ИМТ, как и дозировка медикаментов, представляет собой сложный и очень важный элемент медицинской практики, теоретические основания которого до сих пор полностью не разработаны и не осознаны [37] G. B. West. The Importance of Quantitative Systemic Thinking in Medicine // Lancet. 2012. 379 (9825). P. 1551–1559.
.
8. Инновации и ограничения роста
Обманчиво простое рассуждение Галилея о причинах существования пределов высоты деревьев, животных и строений имеет глубокие последствия для проектирования и инноваций. Выше, разъясняя его доказательство, я закончил следующим замечанием: «Произвольное увеличение размеров конструкции, какой бы она ни была, рано или поздно приведет к ее обрушению под собственным весом. Размер и рост имеют пределы». К этому следовало бы добавить одну чрезвычайно важную оговорку: « …если ничто не изменяется ». Для продолжения роста и предотвращения обрушения должны произойти изменения и, следовательно, инновации . Основными движущими силами инноваций являются рост и постоянная потребность в адаптации к новым или изменяющимся условиям, часто выражающаяся в виде «усовершенствования» или увеличения эффективности.
Подобно большинству физиков Галилей не интересовался процессами адаптации. Чтобы узнать, насколько важную роль играют эти процессы в формировании окружающего нас мира, нам пришлось дожидаться Дарвина. Вообще говоря, адаптивные процессы в первую очередь относятся к областям биологии, экономики и общественных наук. Однако Галилей, рассматривая примеры, взятые из механики, ввел фундаментальную концепцию масштаба, из которой вытекает идея роста, и обе эти концепции играют основополагающую роль в сложных адаптивных системах. Противоречие между законами масштабирования, ограничивающими разные свойства системы, – например, тот факт, что прочность конструкций, поддерживающих систему, масштабируется иначе, чем тот вес, который они поддерживают, – приводит к невозможности бесконечного роста, то есть неограниченного увеличения размеров.
Если, конечно, не случается инноваций. В выводы этих законов масштабирования было заложено основополагающее предположение о сохранении неизменными физических характеристик системы – например, ее формы, плотности и химического состава – при изменении ее размеров. Следовательно, чтобы строить более крупные конструкции или развивать более крупные организмы, выходящие за пределы, установленные законами масштабирования, необходимы инновации, которые изменили бы либо материальный состав системы, либо ее конструкцию, либо и то и другое.
Простой пример инноваций первого типа дает использование более прочных материалов, например стали вместо дерева при сооружении мостов или зданий; в качестве простого примера инноваций второго типа можно вспомнить применение в строительстве арок, сводов и куполов вместо простых горизонтальных балок и вертикальных колонн. В развитии мостов мы находим превосходный пример того, как желание или необходимость решать новые задачи – в данном случае связанные с созданием безопасных и устойчивых средств пересечения более широких рек, каньонов или долин – стимулировали применение и новых материалов, и новых конструкций.
Читать дальше
Конец ознакомительного отрывка
Купить книгу