Здесь и еще в двух парах загрязненных и чистых мест Уайтхед наловил фундулюсов и проанализировал их ДНК, чтобы понять, приходятся ли рыбы в каждой паре мест друг другу ближайшими родичами. Как выяснилось, да: у фундулюсов в лагуне Флакс-Понд и в порту Бриджпорта был общий предок, как и у обитателей гавани Нью-Бедфорда и прибрежных вод острова Блок. Впрочем, на этом их схожесть заканчивалась: в эволюционном плане рыбы с загрязненных участков сильно отдалились от сородичей из чистых вод. Как обнаружил Уайтхед в лабораторных экспериментах, они оказались невосприимчивы к смертельным концентрациям ПХД: если фундулюсы с острова Блок, попав в такую воду, мигом всплыли бы кверху брюхом, то рыбы из Нью-Бедфорда в ней и плавником не повели. То же с рыбами из Бриджпорта и лагуны Флакс-Понд, а также еще из двух пар мест.
В 2016 году Уайтхед и его команда опубликовали в журнале Science статью, где рассказали, как фундулюсу это удалось. Они прочитали геном (полную последовательность всех хромосом, букву за буквой) пятидесяти особей с каждого из восьми участков. Как выяснилось, у каждой рыбы из загрязненной среды мутировали гены, отвечающие за белки AHR, а у некоторых обнаружились мутации и в генах белков, с которыми AHR взаимодействуют. Что интересно, многие мутации были присущи только особям с того или иного загрязненного участка. Это значит, что эволюция несколько раз независимо сделала рыб невосприимчивыми к ПХД.
Затем исследователи захотели понять, как эти мутации влияют на живых особей, и выяснили, что у невосприимчивых к загрязнению фундулюсов попросту нарушено производство белка AHR. Под воздействием ПХД этот белок больше не переключал нужные программы так же активно, как у особей из чистой среды. Иными словами, эволюция дала фундулюсам возможность поддерживать нормальную работу организма, отключив в нем несколько уязвимых компонентов. Возможно, для этого пришлось внедрить какие-либо новые компоненты, а организм рыб перестал работать так же гладко, как прежде, но важно другое: благодаря стремительной городской эволюции фундулюс научился выживать там, где не должен. «Разве это не удивительно? – восхищается Уайтхед. – И на это естественному отбору понадобилось всего несколько поколений!»
И все же ПХД – лишь одна составляющая ядреной химической смеси, которой мы поливаем города. Возьмем, к примеру, дорожную соль. Там, где зимой холодно, дороги щедро посыпают хлористым натрием, чтобы не заледеневали. Только в США каждую зиму на дорогах оказывается 25 миллионов тонн соли – если собрать ее в цельный блок, его объем составит 10 миллионов кубических метров. Неудивительно, что в окружающей среде столько лишней соли: ее находят почти в двух километрах от дорог, которые она защищала ото льда, и на высоте шестидесяти этажей над ними. Из-за этого в больших городах вода каналов и рек зимой становится солоноватой.
Большинству организмов соль сулит одни неприятности. Мы со школы знаем, что вода перемещается в сторону более высокой концентрации соли в ходе процесса под названием «осмос». В соленой среде клеткам организмов приходится усиленно трудиться, чтобы вернуть утекающую из них воду и не высохнуть. Есть и еще одна проблема: по химическому составу натрий очень близок к калию. Калий необходим для ряда процессов в животных и растительных клетках – если заменить его на натрий, эти процессы происходить не смогут. Когда в среде слишком много соли, натрий пытается заменить собой калий, и для организма это ничем хорошим не заканчивается.
У организмов, которые успешно нейтрализуют избыток соли, в ходе эволюции возникли те или иные механизмы для борьбы с ним. В среде, которую то и дело посыпают солью, такие организмы встают на место тех видов, у которых подобных механизмов нет. Как я уже говорил, так устойчивые к соленой среде береговые растения колонизируют обочины крупных дорог в черте города, вытесняя собой обычную придорожную флору. Впрочем, не исключено, что не привыкшие к соли животные и растения тоже вырабатывают устойчивость к ней благодаря посыпке дорог.
Чтобы проверить эту гипотезу, Кайла Колдсноу, аспирант Политехнического института Ренсселера в городе Трой, штат Нью-Йорк, вместе с коллегами провела лабораторный опыт на обыкновенных дафниях ( Daphnia pulex ). Они рассадили особей из одной пойманной партии по так называемым мезокосмам – просторным аквариумам с экосистемой из планктона, растений, моллюсков и ракообразных, максимально приближенной к реальной. Одна часть мезокосмов была пресной, вторая – солоноватой (около трети от уровня солености морской воды), а в третьей содержание соли было средним между первыми двумя. Дафний оставили там на десять недель – они настолько плодовиты, что за это время успевают сменить от пяти до десяти поколений. В конце нескольких потомков пересадили в чистые аквариумы с пресной водой и дождались смены еще трех поколений – так исследователи хотели убедиться в генетической природе возможных изменений. Затем каждую линию исследовали на устойчивость к соли. Оказалось, приспособленность к соли у дафний сохраняется. Линии, жившие в воде со средним уровнем солености, успешно выживали и в солоноватой воде (около 1,3 грамма соли на литр) – ее перенесло от 75 до 90 % особей. В линиях, никогда прежде не сталкивавшихся с солью, выжило всего 46 % особей.
Читать дальше
Конец ознакомительного отрывка
Купить книгу