В интернете я иногда вижу рекламу, где говорится, что это индустрия стоимостью 19,9 триллиона долларов. Кажется, что это много и похоже на обман, но идея о том, что это сфера с многомиллиардными доходами, явно не просто шумиха, потому что несколько человек вложили в нее миллиарды долларов, и это сработало для них.
М. Ф.: Во что лучше всего инвестировать для продвижения вперед? Ведь все еще остались люди, которые верят в условный ИИ и считают, что оптимально совмещать глубокое обучение с более традиционными подходами. Как вы относитесь к этой точке зрения?
Дж. Х.: Я считаю, что работа мозга – это взаимодействие больших векторов нейронной активности. И именно по такому принципу будет работать ИИ. Разумеется, понять механику рассуждений тоже важно, но, мне кажется, мы сможем это сделать уже после того, как реализуем все остальное.
Я не верю в гибридные системы. Был пример в автомобильной промышленности, когда электродвигатель стали использовать для впрыскивания бензина. Точно так же сторонники условного ИИ, признавая все преимущества глубокого обучения, хотят использовать его как слугу, который обеспечит функционирование символических рассуждений. Это попытка остаться на старых позициях, невзирая на меняющиеся обстоятельства.
М. Ф.: Мне вспоминается ваш последний проект, связанный с так называемыми капсулами , имитирующими, как я понимаю, колонки кортекса в мозгу. Считаете ли вы, что результаты изучения мозга следует включать в работу с нейронными сетями?
Дж. Х.: Капсулы появились как сложная и умозрительная комбинация полудюжины разных идей. Об успехах этой концепции пока говорить рано, но ее основой действительно послужила структура человеческого мозга. Думать о работе с нейронными сетями на базе достижений нейробиологии несколько наивно. Ученые пытаются понять базовые принципы функционирования мозга, но при этом есть еще и многочисленные детали, которые по-разному выглядят на разном аппаратном обеспечении. Графические процессоры (GPU) мало напоминают мозг, но это не мешает нам искать общие принципы работы мозга и нейросетей. Например, в обоих случаях большая часть знаний возникает благодаря обучению, а не механическому запоминанию фактов.
Для условного ИИ нужна огромная база фактов и правила их связи друг с другом. Перенести какое-то знание из одного мозга в другой невозможно. В голове множество параметров, то есть весов связей между отдельными нейронами, которые не передадутся. Если один человек расскажет, каким образом что-то работает, другой может повторить эти действия, но не более. И это хорошо, потому что у каждого своя нейронная сеть.
М. Ф.: Правда ли, что глубокое обучение в основном происходит на базе маркированных данных, то есть речь идет о так называемом обучении с учителем, а задача обучения без учителя еще не решена?
Дж. Х.: Это не совсем так. Существует большая зависимость от размеченных данных, но вопрос в том, что считать такими данными. Например, если я попрошу вас предсказать следующее слово в большой текстовой строке, меткой правильного ответа будет слово, которое фактически там фигурирует. Дополнительные метки тут не нужны. А если нужно обучиться распознавать на картинках кошек, потребуется метка «кошка», которая не является частью изображения. Эти метки нужно будет добавлять вручную. По идее первая задача тоже относится к обучению с учителем, потому что мы имеем дело с метками. Но это своего рода промежуточный вариант между маркированными и немаркированными данными.
М. Ф.: Дети по большей части учатся без учителя.
Дж. Х.: Исходя из того, что я говорил выше, ребенок воспринимает окружающую среду, пытаясь предсказать, что будет дальше. Затем, когда что-то происходит, событие помечается как правильно или неправильно угаданное. К сожалению, в случае прогнозирования сложно понять, какой из вариантов, «с учителем» или «без учителя», применяется. Задача, в которой по набору изображений нужно предсказать, какое будет следующим, не попадает ни в одну из двух категорий.
М. Ф.: То есть одно из основных препятствий сейчас – отсутствие общей формы обучения?
Дж. Х.: Да. Но я утверждаю, что решить задачу предсказания могут алгоритмы обучения с учителем.
М. Ф.: А как бы вы определили сильный ИИ?
Дж. Х.: Меня вполне устраивает официальное определение, утверждающее, что это интеллект, сравнимый с человеческим, но многие думают, что появятся отдельные модули ИИ, которые будут становиться все умнее и умнее. Они не понимают, что нейронные сети в чем-то превосходят людей, а в чем-то сильно уступают им. Например, ИИ-система может лучше интерпретировать медицинские изображения, но ей сложно рассуждать о них.
Читать дальше
Конец ознакомительного отрывка
Купить книгу