Умножение (систематическое изучение начинается со 2 класса) вводится как сложение одинаковых слагаемых. Сначала учащимся предлагается освоить лишь распознавание и запись этого действия, а его результат они будут находить с помощью сложения. Отдельно вводятся случаи умножения на 0 и на 1. В дальнейшем составляется таблица умножения однозначных чисел, с использованием которой и соответствующих свойств умножения учащиеся научатся умножать многозначные числа.
Деление (первое знакомство во 2 классе на уровне предметных действий, а систематическое изучение, начиная с 3 класса) вводится как действие, результат которого позволяет ответить на вопрос: сколько раз одно число содержится в другом? Далее устанавливается связь деления и вычитания, а потом – деления и умножения. Причем эта последняя связь будет играть основную роль при обучении учащихся выполнению действия деления. Что касается связи деления и вычитания, то ее рассмотрение обусловлено двумя причинами: 1) на первых этапах обучения делению дать удобный способ нахождения частного; 2) представить в полном объеме взаимосвязь арифметических действий I и II ступеней. В дальнейшем (в 4 классе) операция деления будет рассматриваться как частный случай операции деления с остатком.
Геометрическая линия выстраивается следующим образом. В первом классе (на который выпадает самая большая содержательная нагрузка геометрического характера) изучаются следующие геометрические понятия: плоская геометрическая фигура (круг, треугольник, прямоугольник), прямая и кривая линии, точка, отрезок, дуга, направленный отрезок (дуга), пересекающиеся и непересекающиеся линии, ломаная линия, замкнутая и незамкнутая линии, внутренняя и внешняя области относительно границы, многоугольник, симметричные фигуры.
Во втором классе изучаются следующие понятия и их свойства: прямая (аспект бесконечности), луч, угол и виды углов, прямоугольник, квадрат, периметр квадрата и прямоугольника, окружность и круг, центр, радиус, диаметр окружности (круга), а также рассматриваются вопросы построения окружности (круга) с помощью циркуля и использования циркуля для откладывания отрезка равного по длине данному отрезку.
В третьем классе изучаются виды треугольников (прямоугольные, остроугольные и тупоугольные; разносторонние и равнобедренные), равносторонний треугольник рассматривается как частный случай равнобедренного, вводится понятие высоты треугольника, решаются задачи на разрезание и составление фигур, на построение симметричных фигур, рассматривается куб и его изображение на плоскости. При этом рассмотрение куба обусловлено двумя причинами: во-первых, без знакомства с пространственными фигурами в плане связи математики с окружающей действительностью будет потеряна важнейшая составляющая, во-вторых, изучение единиц объема, предусмотренное в четвертом классе, требует обязательного знакомства с кубом.
В четвертом классе геометрический материал сосредоточен, главным образом, вокруг вопроса о вычислении площади многоугольника на основе разбиения его на треугольники. В связи с этим вводится понятие диагонали прямоугольника, что позволяет разбить прямоугольник на два равных прямоугольных треугольника, а это, в свою очередь, дает возможность вычислить площадь прямоугольного треугольника. Разбиение произвольного треугольника на два прямоугольных (с помощью высоты) лежит в основе вычисления площади треугольника.
При этом следует иметь в виду, что знакомство практически с любым геометрическим понятием в данном учебном курсе осуществляется на основе анализа соответствующей реальной (или псевдореальной) ситуации, в которой фигурирует предметная модель данного понятия.
Линия по изучению величин представлена такими понятиями, как длина, время, масса, величина угла, площадь, вместимость (объем), стоимость [87]. Умение адекватно ориентироваться в пространстве и во времени – это те умения, без которых невозможно обойтись как в повседневной жизни, так и в учебной деятельности. Элементы ориентации в окружающем пространстве являются отправной точкой в изучении геометрического материала, а знание временных отношений позволяет правильно описывать ту или иную последовательность действий (в том числе, строить алгоритмические предписания). В связи с этим изучению пространственных отношений отводится несколько уроков в самом начале курса. При этом сначала изучаются различные характеристики местоположения объекта в пространстве, а затем – характеристики перемещения объекта в пространстве.
Читать дальше
Конец ознакомительного отрывка
Купить книгу