Автоматическое выделение в простейшем случае подразумевает разделение плоскости стимула на нумерованные прямоугольные ячейки заданного размера, которые и рассматриваются как области интереса (см. пример на рисунке 1). Такой способ выделения областей интереса универсален и наиболее адекватен при отсутствии по различным причинам исходных предположений о вероятных «аттракторах внимания» в стимульном материале.
Рис. 1.Участок текстового стимула, автоматически размеченный вертикальными областями интереса, используемыми для обработки последовательностей позиций фиксаций и последующего анализа динамики горизонтальных движений взора испытуемых
Ручное выделение областей интереса подразумевает указание на стимуле именованных плоских фигур требуемых размеров (прямоугольников, многогранников, эллипсов и пр.). Итоговое расположение областей в данном случае, разумеется, зависит от стимульного материала и гипотез исследования, поскольку требует обоснованных предположений о том, какие именно области стимула действительно привлекают зрительное внимание исследуемых категорий испытуемых.
Рис. 2. Участок стимула задачи теста Равена, размеченный вручную областями интереса, используемыми для обработки последовательностей позиций фиксаций и последующего анализа динамики движений взора испытуемых между элементами матрицы задания и областью альтернатив ответа
Формирование последовательностей посещенных областей интереса. По позиционным данным выделенных областей интереса и зарегистрированным траекториям взора на плоскости стимула или последовательностям точек фиксаций взора строятся последовательности номеров «посещенных» областей, в которых пребывал взор испытуемых. Обычно в таких последовательностях повторные смежные пребывания в одной и той же области интереса «склеиваются», т. е. рассматриваются как единое событие. Сформированные последовательности подвергаются дальнейшему анализу: по ним строятся матрицы частот или вероятностей переходов между областями интереса, либо матрица представления преемника, алгоритмы построения которых представлены в следующем подразделе.
Вычисление матриц частотности переходов. По полученным последовательностям далее вычисляются матрица вероятностей переходов и матрица представления преемника. Расчет элементов матрицы вероятностей переходов между зонами интереса несложен и выполняется следующим образом:
– инициализируется (заполняется нулями) квадратная матрица, чьи размерности соответствуют количеству областей интереса;
– по очереди перебираются элементы последовательности посещенных областей интереса (исключая последнюю) – фиксируется текущий элемент последовательности (номер посещенной зоны, обозначаемый как i) и последующий элемент (номер зоны, в которую совершен переход, обозначаемый как j), а сама матрица обновляется: элемент с индексом (i, j) увеличивается на единицу;
– формируется матрица оценок вероятностей переходов, состоящая из элементов полученной на предыдущем шаге матрицы абсолютных частот переходов, поделенных на сумму всех ее элементов.
Расчет элементов матрицы представления преемника более сложен для понимания, однако, так же легко реализуется программно:
– инициализируется (заполняется нулями) квадратная матрица М, чьи размерности соответствуют количеству областей интереса;
– по очереди перебираются элементы последовательности посещенных областей интереса (исключая последнюю) – фиксируется текущий элемент последовательности (номер посещенной зоны, обозначаемый как О и последующий элемент (номер зоны, в которую совершен переход, обозначаемый как;'), a i-я строка матрицы М обновляется по следующему правилу:
где I – единичная матрица того же порядка, что и М, а – параметр скорости обучения, (0<���а<1), у – временной весовой коэффициент, (0<���у<1).
Таким образом, при наблюдении перемещения из области интереса i в область; набор ожидаемых преемников для «отправителя» i (строка М i) обновляется так, чтобы учесть переход в «преемника» j, а также в предполагаемые (с учетом предыстории процесса) преемники посещаемой области; (столбец М), но с уменьшенным влиянием на результат (для этого производится умножение на понижающий временной коэффициент у). В итоге мы учитываем не только сам факт перемещения из области i в область l, но и предысторию перемещения из области j в другие области.
Читать дальше
Конец ознакомительного отрывка
Купить книгу