Отчасти сходное положение и с решением М = 0, сопровождающим все прочие "здравые" варианты. Как мы помним (см. начало раздела 1.4.1), при любой положительной кратности отношений n, наряду с "нормальным" случаем М = n + 1, выступает и этот: М = 0, – из-за чего к нему был применен эпитет "универсального". Несмотря на то, что элементов в системе нет и, казалось бы, не о чем говорить, в свое время мы отказались принять его прозвище "тривиального". Пора обосновать наш отказ.
Исторически числу нуль не очень везло. Человек знал уже много разновидностей чисел, даже иррациональных, но нужды в нуле долгое время не испытывал. Его по существу не ведал ни Древний Египет, ни Вавилон, не востребовала и античность. Зачем считать то, чего нет? (2) Нуль – действительно странное понятие.
Если счет или измерение имеют дело с реально существующими предметами, то в данном случае число уже есть, а предмета – нет. Нуль в роли представления и обозначения начал-таки проклевываться в Вавилоне – для фиксации отсутствующего разряда при записи количеств. Запись и подсчеты велись на разграфленных табличках, и если в каком-то столбце ничего не было, то, чтобы не путаться и чтобы туда случайно ничего не попало, место занимали специальным значком [142].(3) Греки при вычислениях на абаке применяли особый круглый камешек с отверстием посередине. Таковы первые свидетельства о формировании категории значимого отсутствия .
Это были еще робкие попытки, нуль не обладал сколько-нибудь отчетливой самостоятельностью. На протяжении тысячелетий развития процедуры счета он сумел дотянуться лишь до статуса цифры , значка, но не настоящего числа, т.к. без сопровождения других цифр не означал ровно ничего. Часто на его месте по-прежнему оставляли пустое место.
Первыми, кто понял нуль именно как отдельное, реальное число, были, по-видимому, индийцы (по другим версиям, индийцы заимствовали его у китайцев [142, с. 178]). Вообще индийские математики отличались немалым своеобразием. С одной стороны, математики всех древних цивилизаций во многом повторяли друг друга, хотя и использовали разную символику, опирались на разные критерии убедительности. Вероятно, справедливо, когда историки говорят, что науку в современном смысле слова, в частности математическое доказательство, придумала ранняя античность и возводят последнее к риторическим спорам [128]. Публичные диспуты в Древней Греции были исключительно престижны, искусству обоснования своей точки зрения долго и старательно обучались (у софистов, философов). Победе в споре – перед лицом судей, сограждан, богов – придавалось и судьбоносное значение. Полагают, что Фалес (либо Пифагор) первым придумал способ "неотразимой" аргументации, финитное "что и требовалось доказать" до сих пор несет след той эпохи. Но словесное доказательство и убедительное знание – отнюдь не синонимы. У ученых может быть мотивация, весьма отличная от тщеславия греков. Иные из индийских математиков, например, вообще старались тратить поменьше слов. Вместо текста они помещали в рукописи рисунок для изображения, скажем, некоей геометрической истины и подписывали его: "Смотри!" [142]. Такая "голая" подпись сопровождает, среди прочих, чертеж, за которым стоит остроумнейшее, кратчайшее доказательство положения, называемого нами теоремой Пифагора. "Очевидность" в таких случаях становилась буквальной. Но сейчас речь об арифметике, а не геометрии.
Индийцы (по мнению других, китайцы) ввели понятие отрицательного числа, уже Брахмагупта (ок. 598 – 660) уверенно обращается с ними (отрицательное число трактовалось как коммерческий долг [307:I, с.76]). В I в. н.э. в Индии был введен особый знак для нуля, и последний приобретает абсолютное позиционнное значение [224, c. 59], т.е. становится "настоящим" числом. От индусов – через арабов – представление о нуле пришло в Европу, но было здесь окончательно легитимизировано, как полагают, только в ХVII в., вместе с Декартом! (Сам Декарт, впрочем, еще считал отрицательные число и нуль "ненастоящими", "ложными" числами [87, c. 136].)(4) В контексте же индийской культуры нуль выглядит совершенно органично. Во-первых, как только что отмечалось, оригинальны индийская математика в целом, и, скажем, К.Бойер констатирует: "Индусы были сильны в ассоциации и аналогии, в эстетическом и связанном с воображением чутье (flair), в то время как арабы были более практически мыслящие и приземленные в своем подходе к математике" [420, p. 252], цит. по: [152, c. 28]. Европейцы узнавали о достижениях индийцев от арабов, присоединяясь к упомянутым практицизму и приземленности. Во-вторых, более конкретно: индуизм и буддизм издавна были озабочены проблемой значимого отсутствия, у них оно является одним из онтологически, гносеологически центральных – наряду с пустотой, нирваной, избавлением от миража материального мира (из многих словесных обозначений нуля, например "небо", "дыра", в конечном счете больше всего у индийцев привилось название "шунья", пустое). Совершенно иная ориентация у нас, считающих своей духовной родиной Европу.
Читать дальше
Конец ознакомительного отрывка
Купить книгу