Какова же причина этой незапланированной желтизны? Герман объяснял ее присутствием примеси железа. Ролов же утверждал, что во всем виноват мышьяк. Проведя полный анализ карбоната цинка, Штромейер обнаружил новый металл, очень сходный с цинком, но легко отделяемый от него с помощью сероводорода. Ученый назвал металл кадмием, подчеркнув тем самым его «родственные связи» с цинком: греческое слово «кадмея» с древних времен означало «цинковая руда». Само же слово, по преданию, происходит от имени финикийца Кадма, который будто бы первым нашел цинковый камень и подметил его способность придавать меди при выплавке ее из руды золотистый цвет. Это же имя носил герой древнегреческой мифологии: по одной из легенд, Кадм победил в тяжелом поединке Дракона и на его землях построил крепость Кадмею, вокруг которой затем вырос семивратный город Фивы.
В 1818 году Фридрих Штромейер опубликовал подробное описание нового металла, а уже вскоре состоялось несколько «покушений» на его приоритет в открытии кадмия. Первое из них совершил знакомый нам Ролов, однако его притязания были отвергнуты как несостоятельные. Чуть позже Штромейера, но независимо от него тот же элемент открыл в цинковых рудах Силезии немецкий химик Керстен, предложивший назвать элемент мелинумом (что означает «желтый, как айва») — по цвету его сульфида. На след кадмия напали еще двое ученых Гильберт и Джон. Один из них предложил именовать элемент юнонием (по названию открытого в 1804 году астероида Юноны), а другой — клапротием (в честь скончавшегося в 1817 году выдающегося немецкого химика Мартина Генриха Клапрота — первооткрывателя урана, циркония, титана). Но как ни велики заслуги Клапрота перед наукой, его имени не суждено было закрепиться в списке химических элементов: кадмий остался кадмием.
В чистом виде — это довольно тяжелый (тяжелее железа) мягкий металл. Если пруток кадмия приложить к уху и согнуть, то можно услышать характерный треск, вызываемый деформацией кристаллов металла. Такой же звуковой эффект наблюдается и у олова («оловянный крик»).
Сравнительно невысокая температура плавления (321 °C) обусловила широкое применение кадмия в качестве компонента легкоплавких сплавов. К их числу относится, например, сплав Вуда (12,5 % кадмия), который был разработан еще в 1860 году не очень известным английским инженером Вудом; часто это изобретение ошибочно приписывают его однофамильцу — знаменитому американскому физику, но у того есть более чем надежное «алиби»: в момент создания сплава его просто не было на нашей планете — он родился лишь восемь лет спустя. Легкоплавкие сплавы используют как припои, как материал для получения тонких и сложных отливок, в автоматических противопожарных системах, для спайки стекла с металлом.
Кадмиевые сплавы обладают хорошими антифрикционными свойствами. Так, сплав, состоящий из 99 % кадмия и 1 % никеля, применяют для изготовления подшипников, работающих в автомобильных, авиационных и судовых двигателях. Чтобы устранить вредное влияние органических кислот, содержащихся в смазочных материалах, подшипниковые сплавы на основе кадмия иногда покрывают тончайшим слоем индия. В свою очередь кадмиевое покрытие надежно предохраняет железные и стальные изделия от атмосферной коррозии. Раньше для кадмирования металл погружали в расплавленный кадмий: сейчас этот процесс осуществляют только электролитическим путем. Кадмированию подвергают наиболее ответственные детали самолетов, кораблей, а также различные изделия. предназначенные для «несения службы» в условиях тропического климата. Любопытно, что кадмиевые покрытия особенно добросовестно выполняют свои «обязанности» на лоне природы: в сельской местности их коррозионная стойкость заметно выше, чем в промышленных районах. Весьма положительную репутацию в ряде областей техники снискала кадмированная жесть, однако ввиду токсичности кадмия в пищевую промышленность ей вход строго воспрещен. В некоторых странах это запрещение возведено даже в ранг закона.
До недавних пор у кадмиевых покрытий имелся недуг, время от времени дававший о себе знать. Дело в том, что при электролитическом нанесении кадмия на стальную деталь в металл может проникнуть содержащийся в электролите водород. Этот весьма нежеланный гость вызывает у высокопрочных сталей опасное «заболевание» — водородную хрупкость, приводящую к неожиданному разрушению металла под нагрузкой. Получалось, что, с одной стороны, кадмирование надежно предохраняло деталь от коррозии, а с другой — создавало угрозу преждевременного выхода детали из строя. Вот почему конструкторы часто были вынуждены отказываться от «услуг» кадмия.
Читать дальше