При проведении подобных измерений используются широкодиапазонные приемники радиоизлучения, в которых с помощью системы частотных фильтров весь исследуемый диапазон разбивается на ряд участков — каналов. В этих частотных каналах затем проводится усиление принимаемого излучения и определяется его интенсивность. Такие приемники называют спектральными радиометрами.
Качество измерений с помощью радиометров, установленных на борту космических аппаратов, в сильной степени зависит от соответствующих характеристик используемой антенны. Для получения высокого разрешения исследуемого участка на поверхности планеты (т. е. размера участка, усредненные характеристики которого еще возможно определить при использовании данного радиотелескопа) необходимо применять антенны с узкой диаграммой направленности.
Диаграмма направленности представляет собой характерную зависимость коэффициента усиления от различных направлений наблюдения объекта. Часто этот коэффициент измеряют в относительных единицах (по отношению к максимальному значению коэффициента усиления).
Для дальнейшего изложения нам понадобятся следующие характеристики диаграммы направленности:
1. Ширина диаграммы направленности. Она определяется разностью углов наблюдения, при которых коэффициент усиления становится в два раза меньше своего максимального значения.
2. Уровень боковых лепестков и их пространственное распределение относительно главного лепестка . Помимо основного максимума, образуемого главным лепестком диаграммы направленности, существует ряд относительных максимумов, образующих так называемые боковые лепестки диаграммы.
3. Коэффициент рассеяния . Он определяется величиной отношения энергии, принимаемой антенной со всех направлений, кроме соответствующего максимальному усилению (в главном лепестке диаграммы направленности), к энергии, принимаемой в направлении этого главного максимума усиления.
Коэффициент рассеяния фактически определяет влияние, оказываемое на принимаемое излучение (от исследуемой области) излучением близлежащих к ней районов (в направлениях вне главного лепестка). Чем выше коэффициент рассеяния, тем больше бывает ошибка измерений, поскольку в этом случае на полученные результаты будут оказывать сильное воздействие боковые лепестки диаграммы направленности. Размеры области (зоны), излучение которой на входе приемника свободно от влияния боковых лепестков, зависят от ширины диаграммы направленности данной антенны и от расстояния приемника до наследуемой области. Поэтому очевидна необходимость использования антенн с более узкой диаграммой направленности. Однако это связано с увеличением размеров антенн, что не всегда возможно из-за пространственных и весовых ограничений, возникающих при использовании космических аппаратов.
Мы не будем здесь касаться конструкций и схем построения антенн, используемых на борту космических аппаратов. Отметим только, что антенны с шириной диаграммы направленности менее 10° обычно называют антеннами с узкой диаграммой направленности, с шириной более 10° — антеннами с широкой диаграммой направленности.
Советский радиоастроном В. С. Троицкий в свое время открыл поляризацию теплового радиоизлучения Луны, характеризуемую тем, что интенсивность принимаемого радиоизлучения оказалась зависящей от поляризационных свойств антенны и угла, под которым она направлена к исследуемой поверхности (угла визирования). В связи с этим изучение поляризации стало играть определенную роль в радиофизических измерениях теплового излучения планет.
Антенны космических аппаратов рассчитаны на прием радиосигналов либо с круговой, либо с линейной поляризацией. Если антенна рассчитана на прием радиоизлучения с линейной поляризацией, то интенсивность принимаемого ею сигнала будет зависеть от угла между плоскостью наблюдения и плоскостью поляризации (см. рис. 1). Полученная зависимость позволяет получить важную информацию об электрических свойствах исследуемого грунта.
Радиорефракционные измерения
В последние годы широкое применение в космических экспериментах нашел метод, изучающий радиорефракционные свойства тропосфер и ионосфер. Одним из преимуществ этого метода является то, что для его реализации на борт космического аппарата, как правило, не надо устанавливать специальной аппаратуры.
Читать дальше