– Чем ты это докажешь? – спросили его.
Он ответил:
– В народе говорят: кто садится первым, тому и почета больше всего; а названная мной часть тела всегда садится первой, следовательно, она является самой почетной.
5. – Что от нас дальше – Луна или Африка?
– Конечно же Африка, ведь Луну отсюда видно, а Африку – нет!
6. Пять землекопов за 5 часов выкапывают 5 метров канавы. Следовательно, для того, чтобы выкопать 100 метров канавы за 100 часов, потребуется сто землекопов.
Логические тупики (Парадоксы)
От софизмов следует отличать логические парадоксы(от греч. paradoxes – «неожиданный, странный»). Парадокс в широком смысле слова – это нечто необычное и удивительное, то, что расходится с привычными ожиданиями, здравым смыслом и жизненным опытом. Логический парадокс – это такая необычная и удивительная ситуация, когда два противоречащих суждения не только являются одновременно истинными (что невозможно в силу логических законов противоречия и исключенного третьего), но еще и вытекают друг из друга, друг друга обуславливают. Если софизм – это всегда какая-либо уловка, преднамеренная логическая ошибка, которую можно обнаружить, разоблачить и устранить, то парадокс представляет собой неразрешимую ситуацию, своего рода мыслительный тупик, «камень преткновения» в логике: за всю ее историю было предложено множество разнообразных способов преодоления и устранения парадоксов, однако ни один из них до сих пор не является исчерпывающим, окончательным и общепризнанным.
Наиболее известный логический парадокс – это парадокс «лжеца». Часто его называют «королем логических парадоксов». Он был открыт еще в Древней Греции. По преданию, философ Диодор Кронос дал обет не принимать пищи до тех пор, пока не разрешит этот парадокс и умер от голода, так ничего и не добившись; а другой мыслитель – Филет Косский впал в отчаяние от невозможности найти решение парадокса «лжеца» и покончил с собой, бросившись со скалы в море. Существует несколько различных формулировок данного парадокса. Наиболее коротко и просто он формулируется в ситуации, когда человек произносит простую фразу: Я лжец. Анализ этого элементарного и бесхитростного на первый взгляд высказывания приводит к ошеломляющему результату. Как известно, любое высказывание (в том числе и вышеприведенное) может быть истинным или ложным. Рассмотрим последовательно оба случая, в первом из которых это высказывание является истинным, а во втором – ложным.
Допустим, что фраза Я лжец истинна, т. е. человек, который произнес ее, сказал правду, но в этом случае он действительно лжец, следовательно, произнеся данную фразу, он солгал. Теперь предположим, что фраза Я лжец ложна, т. е. человек, который произнес ее, солгал, но в этом случае он не лжец, а правдолюб, следовательно, произнеся данную фразу, он сказал правду. Получается нечто удивительное и даже невозможное: если человек сказал правду, то он солгал; а если он солгал, то он сказал правду (два противоречащих суждения не только одновременно истинны, но и вытекают друг из друга).
Другой известный логический парадокс, обнаруженный в начале XX века английским логиком и философом
Бертраном Расселом, – это парадокс «деревенского парикмахера». Представим себе, что в некой деревне есть только один парикмахер, бреющий тех ее жителей, которые не бреются сами. Анализ этой незамысловатой ситуации приводит к необыкновенному выводу. Зададимся вопросом: может ли деревенский парикмахер брить самого себя? Рассмотрим оба варианта, в первом из которых он сам себя бреет, а во втором – не бреет.
Допустим, что деревенский парикмахер сам себя бреет, но тогда он относится к тем жителям деревни, которые бреются сами и которых не бреет парикмахер, следовательно, в этом случае, он сам себя не бреет. Теперь предположим, что деревенский парикмахер сам себя не бреет, но тогда он относится к тем жителям деревни, которые не бреются сами и которых бреет парикмахер, следовательно, в этом случае он сам себя бреет. Как видим, получается невероятное: если деревенский парикмахер сам себя бреет, то он сам себя не бреет; а если он сам себя не бреет, то он сам себя бреет (два противоречащих суждения являются одновременно истинными и взаимообуславливают друг друга).
Парадоксы «лжеца» и «деревенского парикмахера» вместе с другими подобными им парадоксами также называют антиномиями(от греч. antinomia – «противоречие в законе»), т. е. рассуждениями, в которых доказывается, что два высказывания, отрицающие друг друга, вытекают одно из другого. Считается, что антиномии представляют собой наиболее крайнюю форму парадоксов. Однако довольно часто термины «логический парадокс» и «антиномия» рассматриваются как синонимы.
Читать дальше
Конец ознакомительного отрывка
Купить книгу