Привлекательность нейронных сетей в том, что они автоматически распространяют усвоенные знания на новые похожие объекты. Если сеть научили, что тигры едят глазированные хлопья, она будет склонна к обобщению, что львы тоже едят глазированные хлопья, потому что «поедание глазированных хлопьев» ассоциировано не с «тиграми», а с более простыми характеристиками, вроде «рычания» и «усов», которые относятся и ко львам тоже. Коннекционистская школа, как и школа ассоцианизма Локка, Юма и Милля, доказывает, что в этих обобщениях состоит суть интеллекта. Если это так, то обученная — но в остальном обычная — нейронная сеть может объяснить разум.
Специалисты по компьютерным моделям часто применяют их к упрощенным задачам, чтобы доказать, что они могут работать в принципе. Вопрос тогда ставится так: можно ли масштабировать эти модели для решения более реалистичных задач или, как говорят скептики, исследователи «лезут на дерево, чтобы достать луну»? В этом и состоит проблема коннекционизма. Простые коннекционистские сети могут убедительно демонстрировать память и способность к обобщениям в простых задачах, таких как чтение списка слов или запоминание общих свойств животных. Но им не хватает мощности, чтобы воспроизвести реальные способности человеческого интеллекта, например понять смысл предложения или рассуждать о живых существах.
Люди не просто свободно ассоциируют похожие друг на друга вещи или вещи, которые часто появляются одновременно. Их разумы комбинаторны, они учитывают утверждения, что верно для чего и кто, что, кому, где, когда и зачем сделал. Это требует вычислительной конфигурации гораздо более сложной, чем стандартное переплетение нейронов в неспециализированных коннекционистских сетях. Конфигурации, оборудованной логическим аппаратом: правилами, переменными, утверждениями, состояниями цели и различными видами структур данных, организованных в системы высшего уровня. На эту проблему обращали внимание многие когнитивисты, в том числе Гари Маркус, Марвин Мински, Сеймур Паперт, Джерри Фодор, Зенон Пилишин, Джон Андерсон, Том Бивер и Роберт Хадли. Ее признают и исследователи нейронных сетей, не принадлежащие к коннекционистской школе, например Джон Хаммел, Локендрой Шастри и Пол Смоленски [13] Anderson, 1993; Fodor & Pylyshyn, 1988; Hadley, 1994a; Hadley, 1994b; Hummel & Holyoak, 1997; Lachter & Bever, 1988; Marcus, 1998; Marcus, 2001a; McCloskey & Cohen, 1989; Minsky & Papert, 1988; Shastri & Ajjanagadde, 1993; Smolensky, 1995; Sougné, 1998.
. Я сам много писал об ограничениях коннекционизма и в своих исследованиях, и в популярной литературе и ниже подвожу итог моих собственных рассуждений [14] Berent, Pinker, & Shimron, 1999; Marcus et al., 1995; Pinker, 1997; Pinker, 1999; Pinker, 2001a; Pinker &Prince, 1988.
.
В книге «Как работает мозг» (How the Mind Works) в разделе под названием «Коннектоплазма» я описываю некоторые простые логические взаимосвязи и способности, лежащие в основе нашего понимания завершенной мысли (такой, как смысл предложения), которые сложно реализовать с помощью неспециализированных сетей [15] Pinker, 1997, pp. 112–131.
. Одна из них — различение видовых и индивидуальных свойств, таких как разница между утками вообще и конкретной уткой. Обе имеют общие черты (плавают, крякают, покрыты перьями и т. д.), и обе, таким образом, представлены одним и тем же набором активных элементов стандартной коннекционистской модели. Но люди знают, в чем разница.
Второй человеческий талант — композиционность: способность понимать новые сложные соображения, которые не являются суммой простых мыслей, но зависят от их отношений. Например, мысль, что кошки ловят мышей, нельзя понять, активируя по отдельности каждый элемент: «кошки», «мыши» и «ловить», потому что так мы легко придем к заключению, что это мыши ловят кошек.
Третий логический талант — квантификация, связывание переменных: например, разница между одурачиванием некоторых людей все время или всех людей некоторое время. Без вычислительного эквивалента для иксов и игреков, без понимания утверждений вида «для любого икс» коннекционистская модель не увидит разницы между приведенными высказываниями.
Четвертый — рекурсия: способность встроить одну мысль внутрь другой, так что мы можем понимать не только утверждение, что Элвис жив, но и мысль, что National Enquirer сообщил, что Элвис жив, или что некоторые люди верят сообщению журнала National Enquirer, что Элвис жив, или что это удивительно, но некоторые люди верят сообщению журнала National Enquirer, что Элвис жив, и т. д. Коннекционистские сети будут напластовывать эти утверждения и запутаются в подлежащих и сказуемых.
Читать дальше
Конец ознакомительного отрывка
Купить книгу