В нашей Галактике уже найдены три пары подходящих нейтронных звезд, которые рано или поздно сольются. Слияние будет смертельным и для них, и для всех объектов, расположенных от них на расстоянии нескольких тысяч световых лет. К счастью, ближайшая из этих пар сольется, по расчетам, лишь через 220 миллионов лет. Однако нейтронные звезды весьма сложно обнаружить. Они очень малы, всего 10–20 километров в диаметре, и поэтому почти не различимы в видимом диапазоне. Эти опасные пары могут в любой момент неожиданно взорваться у нас под самым боком.
Гораздо легче найти звезду, которая может стать гиперновой. Такую не заметить трудно. Самым реальным кандидатом на эту роль является звезда Эта из созвездия Киля (часть группы созвездий, составляющих на небе Корабль Арго: есть еще Корма и Парус). Она в 100 раз тяжелее нашего Солнца. Диаметр ее ядра равен трем световым месяцам, а внешней оболочки — двум световым годам (расстояние от Земли до Солнца — 8 световых минут). В XIX веке она вдруг резко просияла и стала на нашем небосклоне второй по яркости после Сириуса; так светила около 20 лет, после чего угасла и пропала для невооруженного хотя бы биноклем наблюдателя. Но за последние десятилетия звезда разгорелась и ее опять стало видно невооруженным глазом.
В самом конце прошлого тысячелетия астрономы, направив на Эту телескоп «Чандра», обнаружили, что центр звезды сотрясают гигантские взрывы и от нее разлетаются ударные волны, а это, скорее всего, означает: звезда уже бьется в предсмертных судорогах.
Если взрыв произойдет дальше, то все будет несколько проще. Брайн Томас из Канзасского университета и Чарлз Джэкман из Годдардовского центра космических полетов рассчитали последствия 10-секундного всплеска в случае, если он произойдет на расстоянии до 10 тысяч световых лет.
Пробив защитные поля, поток гамма-излучения обрушится на Землю. Высокоэнергетичные гамма-лучи разобьют содержащийся в воздухе азот (его в нашей атмосфере 77 %) на отдельные атомы. Атомарный азот вступит в реакцию с кислородом, в результате чего получится окись азота. Она, в свою очередь, начнет разрушать озон, образуя диоксид азота, который, вступая в реакцию с кислородом, даст азотную окись. Круг замкнется, и пойдет цепная реакция. За 5 недель будет уничтожено до 90 % озонового слоя планеты.
На его восстановление потребуется не менее 5 лет. Все эти годы поверхность планеты будет активно обрабатываться смертоносной космической радиацией. Диоксид азота, из которого будет в основном состоять новая атмосфера, — токсичный бурый газ. Приток солнечного света к поверхности планеты уменьшится примерно вдвое. Наступит новый ледниковый период. Даже если человечество, изрядно сократившись, переживет эти катаклизмы, не задохнется и сумеет спрятаться от радиации, оно по уровню жизни будет отброшено в каменный век.
Мнение эксперта
Алексей Степанович Позаненко — астрофизик, старший научный сотрудник Института космических исследований РАН.
Космические гамма-всплески уже более 30 лет остаются одним из самых загадочных явлений современной астрофизики. Однако это не значит, что научное сообщество уделяет им недостаточно внимания.
За прошедшие годы количество исследователей, изучающих гамма-всплески, возросло от десятка увлеченных людей до нескольких тысяч ученых и инженеров практически по всему миру; следует упомянуть также несколько космических миссий, посвященных исключительно гамма-всплескам, и десятки оптических и радиотелескопов, ведущих наблюдения.
Выходит, дело не в недостаточности внимания, а в самом явлении, в его скоротечности и неповторимости. Столь короткое событие, иногда длительностью всего лишь одну сотую секунды, чрезвычайно сложно не только исследовать, но и просто зарегистрировать, особенно если никто не знает, где и когда оно произойдет. Гамма-всплески никогда не происходят в одном и том же месте пространства и не присылают нам заблаговременно уведомление о своем начале. Поэтому прогнозировать их появление невозможно. Приборам и исследователям надо быть в постоянной готовности. Гамма-всплески превратились во всеволновое явление — излучение от источников всплесков регистрируется и в радио-, и в оптическом, и в рентгеновском, и в гамма-диапазоне, вплоть до чрезвычайно жестких фотонов с энергией гигаэлектронвольты, а каждое событие является по-своему уникальным. Приходится ломать голову, чтобы найти в разнообразии проявлений гамма-всплесков что-то общее, присущее всем событиям.
Читать дальше
Конец ознакомительного отрывка
Купить книгу