Это сенсация, до сей поры нам были известны живые организмы, состоящие только из углерода, кислорода, водорода, азота, серы и фосфора, не считая микроэлементов. Но в озере Моно фосфора оказалось мало, зато много мышьяка. Этот элемент находится в одной с фосфором V группе таблицы Менделеева и похож на фосфор по своим химическим свойствам, так что такая замена вполне возможна. Другое дело, что соединения мышьяка часто являются сильными ядами, однако и здесь удивляться нечему. Углерод тоже образует смертельно опасные соединения, например угарный газ, однако является основным элементом жизни, так что «мышьяковистый» организм вполне может существовать и на других планетах с ядовитыми морями.
Но чем бы ни питались эти странные морские и озерные гады, какой бы способ получения энергии они себе ни придумали, их тела все равно состоят из белков, веществ, по определению, не живых, но без которых жизнь невозможна.
Есть такая кишечная бактерия эшерихия коли (E.coli), которую очень любят биохимики и генетики — с ней удобно проводить самые различные опыты, ведущие прямиком к замечательным открытиям. Так вот, установлено, что в клетке этой бактерии содержится около 3 тысяч различных белков. В организме же человека насчитывается около 5 миллионов белков. Эти пять миллионов выполняют самые разнообразные функции — каталитическую (ферменты), питательную (например, белки яйцеклетки), транспортную (перенос кислорода гемоглобином), защитную (антитела), сократительную (мышцы), структурную (коллаген соединительной ткани, кератин волос, кожи, ногтей) и гормональную (гормон гипофиза). Поразительно, что все белки состоят хоть и из большого количества, но простых структурных блоков — аминокислот, связанных друг с другом в так называемые полипептидные цепи. Из этих полипептидных цепей и сделаны белки.
Первая аминокислота была выделена из желатина еще в 1820 году, но полный аминокислотный состав белков был расшифрован только через сто с лишним лет — это довольно сложная работа. Оказалось, что белок с помощью различных ферментов, например пищеварительных, можно расщепить на аминокислоты. Именно это и происходит, когда правоверный мусульманин съедает пушкинский «ростбиф окровавленный» из говядины, а неверный — свиную рульку. Все аминокислоты представляют собой производные карбоновых кислот, у которых один атом водорода замещен на аминогруппу — NH 2.
По правилам химической номенклатуры, атомы углерода маркируются греческими буквами альфа, бета, гамма и так далее, причем первым альфа-атомом является ближайший к карбоновой группе — COOH атом углерода. Разумеется, аминогруппа может заместить атом водорода у любого атома углерода, хоть альфа, хоть гамма, хоть омега. Однако выяснилось, что в состав природных белков входят только альфа-аминокислоты. Если угодно, это одна из загадок природы.
В составе белков открыто 20 различных альфа-аминокислот, все они различаются по составу радикала R. Эти 20 аминокислот делятся пополам на заменимые, которые могут синтезироваться в организме человека (и животных), и незаменимые, которые необходимо получать из пищи. В принципе совершенно не важно, из какой пищи — растительной или животной — можно и нужно получать незаменимые аминокислоты, однако давно известно, что в съедобных растениях слишком мало трех аминокислот, которые называются лизин, метионин и триптофан. Вегетарианцы могут не расстраиваться — недостаток этих аминокислот легко восполнить, например, из молока, творога и яиц. Особо строгие вегетарианцы, их называют веганами, которые яйца и молочные продукты не едят, могут добрать лизина, метионина и триптофана из орехов. Впрочем, в горохе и прочих бобах этих аминокислот несколько больше, чем в другой растительной пище.
У аминокислот имеется еще одно очень важное свойство. В главе 3 мы обсуждали понятие изомерии, то есть существование различных по строению, но одинаковых по составу веществ. Для аминокислот также известна изомерия, в данном случае это оптическая или стереохимическая изомерия. Например, для простейшей альфа-аминокислоты аланина (альфа-аминопропионовая кислота, если следовать терминологии) известны два изомера:
Первый из этих изомеров, различающихся расположением аминогруппы и водорода, называется L-аланином, а второй D-аланином. Оптическим этот вид изомерии назван потому, что они проявляют себя по-разному при облучении светом с особыми свойствами. Не вдаваясь в излишние подробности, скажем, что один изомер называется левым (L — от латинского laevus, левый), а второй правым (D — от латинского dextra, правый). И вот еще одна загадка природы: практически все встречающиеся в природе альфа-аминокислоты имеют L-конфигурацию и лишь на таких аминокислотах синтезируются белки в клетках живых организмов. Не очень понятно, почему именно такие «живые» аминокислоты выбрала природа. Может быть, это произошло случайно. Первые комочки живой протоплазмы опять-таки совершенно случайно содержали немного больше левовращающих аминокислот, именно к ним приспособились первые ферменты, а потом уже природе не хотелось ничего изменять. Гипотезу о сознательном выборе L-аминокислот неким Творцом обсуждать не будем, для этого есть Ветхий Завет. Любопытно только, что L- и D-аминокислоты отличаются не только по конфигурации, но и по вкусу! Наши «живые» L-аминокислоты горькие, а D-аминокислоты почему-то сладкие. Так что у нас вовсе не «сладкая жизнь», скорее нужно было назвать ее горькой. Впрочем, для большинства населения Земли, за исключением разве что «золотого миллиарда», это так и есть.
Читать дальше
Конец ознакомительного отрывка
Купить книгу